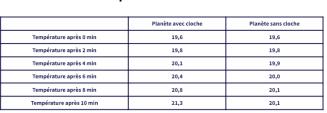
Réflexions sur le changement climatique :

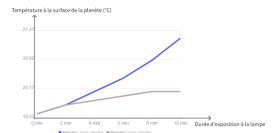
C'est pas brillant?!

Etat des lieux : le changement climatique

Une cause majeure : l'effet de serre

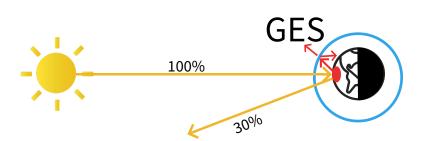
1-Etude et modélisation de l'effet de serre.

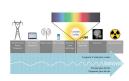



L'atmosphère terrestre : un rôle clé dans l'effet de serre

A la **même distance d'une lampe** envoyant de la "lumière visible" : notre Soleil.

Nous mesurons l'évolution de la température à la surface des planètes au

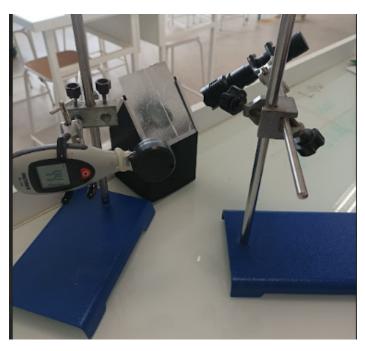

cours du temps ...


Une terre sous cloche en verre

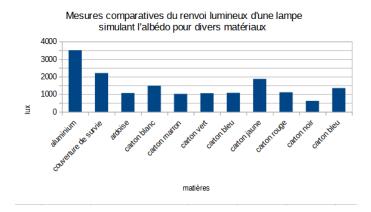
Adaptation et/ou Atténuation au changement climatique

Adaptation : Trouver des moyens pour mieux vivre le changement climatique et ses conséquences à venir ...

Atténuation : Trouver des moyens pour limiter l'effet de serre additionnel et le réchauffement climatique ...



Limiter l'émission des rayonnements infrarouges (IR)


Quels matériaux renvoient le maximum de lumière visible?

Expérience : Des **matériaux** qui **renvoient plus ou moins** la lumière visible.

Mesures de l'albédo de divers matériaux.

1	mesure comparative du phénomène de l'albédo			
2	matériaux Intensité lumineuse renvoyée (Lux			
3	aluminium	3500		
4	couverture de survie	2200		
5	ardoise 1070			
6	carton blanc	1480		
7	carton marron	1020		
8	carton vert	1060		
9	carton bleu	1080		
10	carton jaune	1870		
11	carton rouge	1110		
12	carton noir	620		
13	carton bleu	1350		
1/1				

Limiter l'émission des rayonnements infrarouges (IR)

Quels effets des matériaux présents sur les toits des maisons?

Expérience :

>Après 10 minutes :

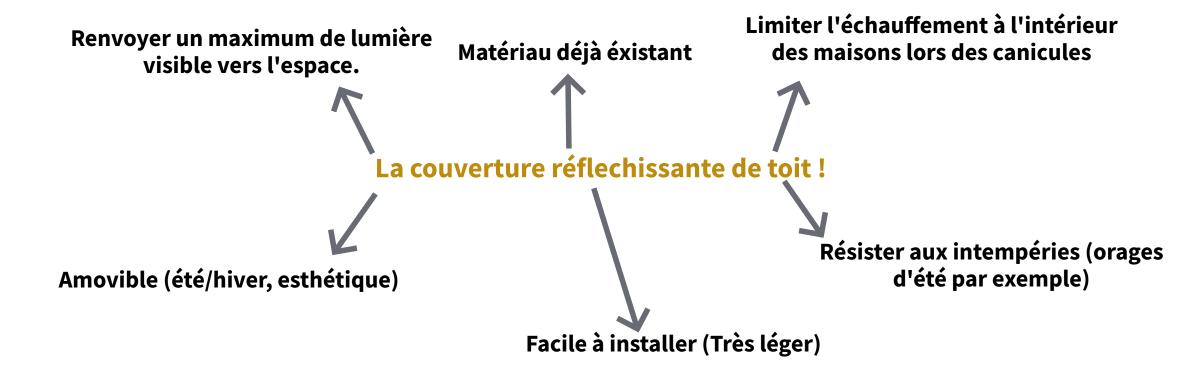
Température maison avec toit **blanc** : **33,2°C**

Température maison avec toit en ardoise : 43,4 °C

Température maison "noire": 45,3°C

(la maison fond par endroit!)

Température maison avec toit en **aluminium : 27,5°C**


Température maison avec toit en couverture de survie :30,7° C

>La lumière non renvoyée est **absorbée** par le matériau qui s'échauffe : sa température augmente.

>En plaçant un matériau qui renvoit beaucoup de lumière visible à la surface, on limite l'absorption, l'échauffement et donc l'émission d'IR qui contribuent à l'effet de serre!

>Un "mix" entre adaptation et atténuation.

Résister aux intempéries (orages d'été par exemple)

Aluminium VS Couverture de survie ?

Expériences : Des tests au **déchirement** par étirement.

A quelle valeur de **poids (force)** maximale une feuille d'aluminium ou de couverture de survie se déchirent-elles ?

Protocole:

>Echantillons de mêmes dimensions (mêmes épaisseurs ?)

>Mise en charge progressive par ajout de masse.

>Calcul de la valeur du poids (en N) en utilisant la relation :

$$P = m \times g$$
 avec $g = 10 \text{ N/kg (Terre)}$

Masse (m en kg)	Poids (P en N)	Validation	
0,5	5	ок	Dimensions de l'échantillon de couverture étudié :
1	10	ok	l:6,5 cm
1,5	15	ok	L: 18 cm
2	20	ok	Surface: l x L = 117 cm ²
2,5	25	ok	
3	30	ok	
4	40	ok	
5	50	ok	
6	60	ok	
7	70	ok	Proche de la rupture

Masse (m en kg)	Poids (P en N)	Validation	Dimensions de l'échantillon de couverture étudi	
1	10	ok	1:23.5 cm	
2	20	ok	L: 15 cm Surface: x = 352.5 cm ²	
4	40	ok	Surface: TX E = 352.5 cm	
6	60	ok	masse de rupture : 11,150 kg	
8	80	ok	11,105 kg ou 11150g	
10	100	ok	soit P = m x g = 11,150 x10 = 111,50 N	
11	110	ok	Proche de la rupture	

Masse (m en kg)	Poids (P en N)	Validatio	
1	10	ok	l: 23.5 cm L: 15 cm
2	1	1	Surface : Lx L = 352.5 cm ²
4	1	1	Surface.TXE = 332.5 CIT
6	1	1	masse de rupture : à moins de 2 kg !
			soit à moins de P = m x g = 2 x10 = 20 N
			Dimensions de l'échantillon d' aluminium étudié :
Masse (m en kg)	Poids (P en N)	Validation	biliterisions de l'echantation à <u>attititituil</u> étable.

Masse (m en kg)	Poids (P en N)	Validation	Dimensions de l'echantillon d'aluminium etudie :
1	10	ok	1: 23.5 cm L: 15 cm
1,2	12	ok	Surface: Lx L = 352.5 cm ²
1,4	14	ok	Surface . IX E = 352.5 CIII
1,6	16	ok	masse de rupture à moins 1,8 kg
1,8	18	rupture!	soit pour une force de P=mxg=1,8x10=18N

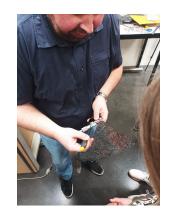
La couverture de survie

Un matériau inventé par la NASA en 1964.

Un matériau déjà existant principalement utilisé dans les secours.

Composition: Une fine couche de plastique (polyéthylène) recouverte d'une fine couche d'aluminium vaporisé sur la surface du polyéthylène à l'aide d'un procédé de pulvérisation sous vide.

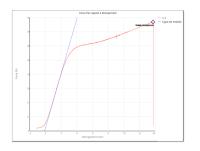
Réutiliser des couvertures de survie déjà utilisées ?

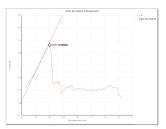


Des expériences à l'INSA CVL de Blois!

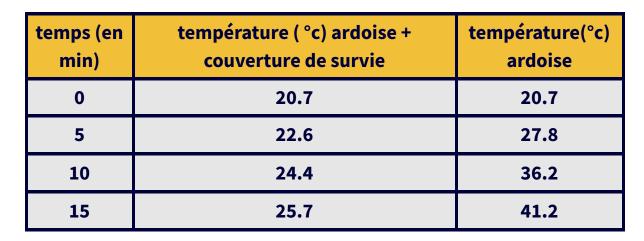
Michael CALIEZ- Enseignant et chercheur au Lamé

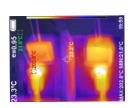
12 "microns"

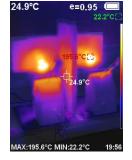


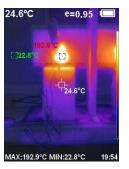


Traverse	Force	Durée	
mm ktN	sec		
0.007781982		-1.15525675937533E-	05 0.2259999960666
0.012512206	9221106	-1.87242832034826E-	05 0.3260002434253
0.017344156	7312693	-2.89072934538126E-	05 0.4260001778602
0.022328699	1950286	3.11622658845962E-0	7 0.5260001420974
0.027567544	7483081	-9.5100337639451E-0	6 0.6260000467300
0.032399493	6479721	-3.60596589744091E-	05 0.7260000109672
0.037638346	8392305	-2.318695932626728-	05 0.8260002732270
0.042419433	1571925	-3.22890048846602E-	06 0.9260001778602
0.047403969	8019624	-1.74917243421078E-	05 1.0260001420974
0.052439372	666413	1.73438899219036E-0	5 1.1260000467300
0.057423909	3111828	-5.80121809616685E-	06 1.2259999513620
0.062255858	2108468	-3.64477969706058E-	05 1.3260002136230
0.067392982	6007225	2.16215755790472E+0	5 1.4260002374649
0.072428381	8271942	-1.98118537664413E-	05 1.5260001420974
0.077463788	3296236	1.15355389425531E-0	7 1.6260000467300
0.082448321	3364147	-3.49123519845307E-	06 1.7259999513620
0.087483726	5628864	-2.43697594851255E-	05 1.8260002136230
0.092519127		-3.12034543603659E-	
0.097401934		2.64634061604738E-0	
0.102437334	135175	-1.45654631778598E-	05 2.1260001659393
0.107320149	254519	1.44128175452352E-0	5 2.2260000705719
0.112355548		-1.39183895662427E-	
0.117594398		1.26602612435818E-0	
			2600002288818
0.127512612		4.64389063417912E-0	
0.132446293	719113	-5.69155719131231E-	
0.137430834		-9.19965468347073E-	
0.142466233		-3.08470763266087E-	
0.147603356	342251	1.81021168828011E-0	5 3.0260000228881
			2600016593933
0.157674148		1.82802211493254E-0	
0.162506097		3.21532227098942E-0	
0.167490637		8.86171598536833E-0	
0.172475178		2.46061105281115E-0	
0.177408859		4.61996532976627E-0	
0.182596835	657023	2.213228493928916-0	5 3.7260000705719

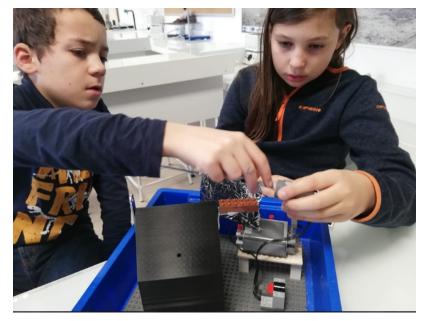


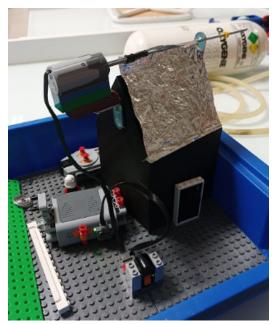

>Un choix "mécanique" qui s'impose!


Limiter l'échauffement à l'intérieur des maisons lors des canicules


Une "ultime" expérience pour confirmer :Un toit en ardoise recouvert d'une couverture de survie ...

Expérience: Mesures et comparaisons de températures.



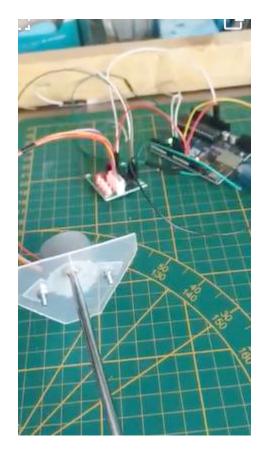


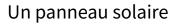
Amovible (été/hiver, esthétique) ET facile à installer

Un store placé dans le faîtage de la maison

Réflexions et étude de faisabilité

Premiers tests


Des améliorations techniques


Une carte Arduino et un moteur pas à pas

Carte Arduino UNO

Une idée innovante ...

Une entreprise partenaire du projet

Un soutien industriel par la mise à disposition de savoir-faire, de matériel et de connaissances.

Une couverture de survie cousue sur un store!

Réflexions sur le changement climatique : c'est pas brillant !??

En conclusion ...

