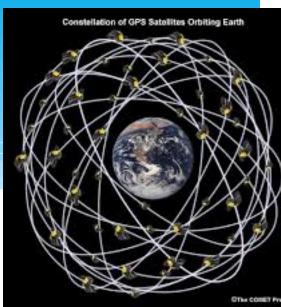
Relativité et GPS

Présentation de la résolution de problème

Le système GPS

- * 24 satellites à 20 200 km d'altitude
- * 6 satellites sur chaque orbite quasi circulaire
- * 6 orbites inclinées de 55 ° (par rapport au plan équatorial)
- * 4 satellites toujours visibles au moins.



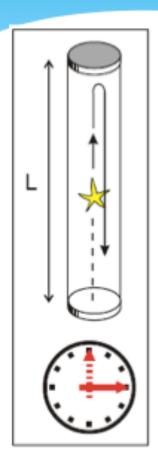
Le signal GPS

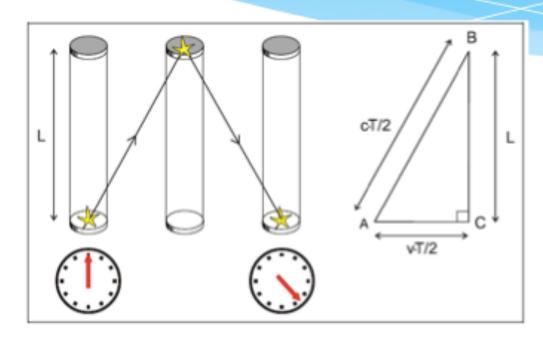
- * Plusieurs segments (militaire, civil, administrateur...)
- * Signal avec un porteuse autour de 1500 MHz
- * Dans le signal : position des satellites, heure d'émission du signal
- * Horloges atomiques embarquées

Les corrections relativistes

- * En toute rigueur, il faut raisonner dans le référentiel géocentrique supposé galiléen.
- * Pour les élèves : référentiel terrestre supposé galiléen, sans la rotation de la Terre.
- * Les corrections relativistes : avance des horloges embarquées / horloges terrestres de 39 μs par jour

Dilatation des durées : Horloge de lumière





$$\Delta t_{impropre} = \frac{\Delta t_{propre}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Relativité restreinte

* Dilatation du temps

* Temps propre celui de l'horloge embarqué dans le satellite.

* Retard de l'horloge / référence sur terre : 7,2μs par jour

Relativité générale

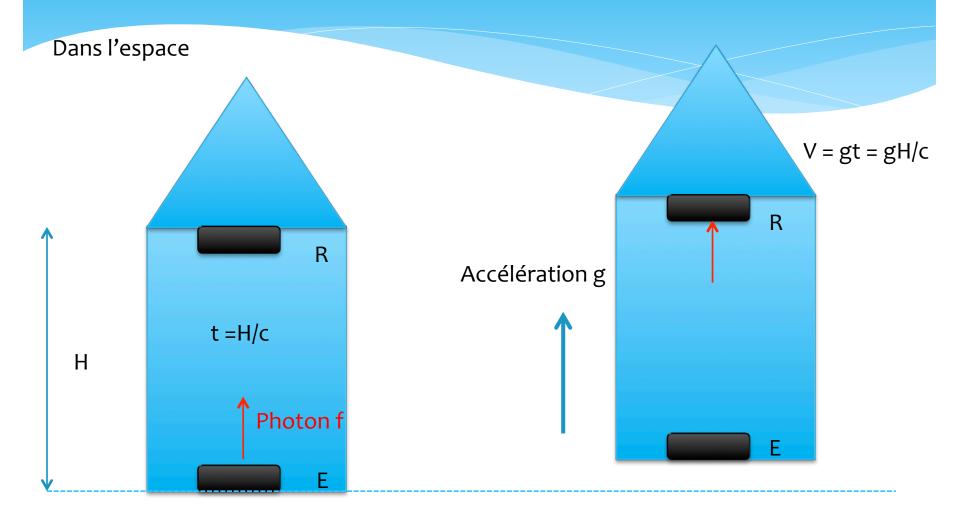
* Décalage gravitationnel :

La gravitation « ralentit » le rythme de l'horloge désynchronisation des horloges proportionnelle à $\Delta U/c^2$

Avec U le potentiel gravitationnel au voisinage de la Terre : $U(R) = -G.M_T/R$

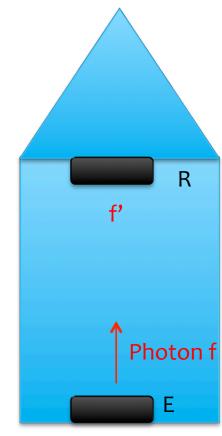
* Avance de l'horloge / référence sur terre : 46 μs par jour

Détour relativité générale



Doppler: $f' = f(1-v/c) = f(1-gH/c^2)$

Principe d'équivalence : situation analogue



$$f' = f(1-gH/c^2)$$

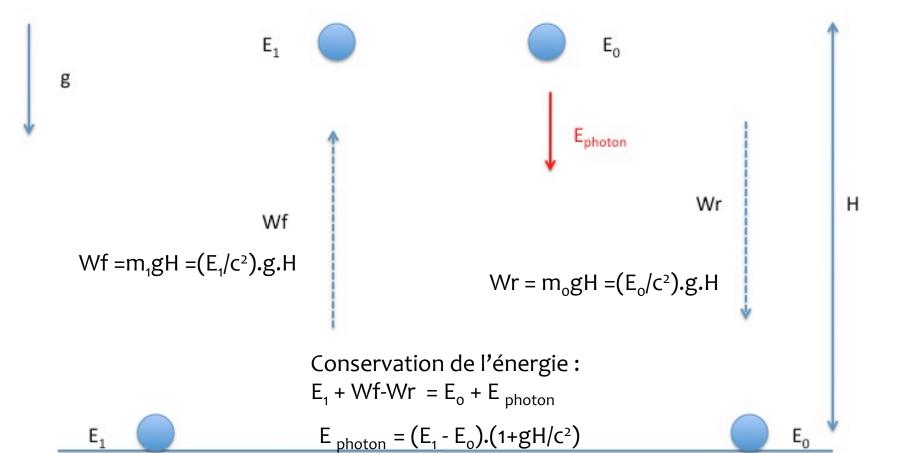
$$\Delta f/f = -gH/c^2$$

Décalage vers le rouge

La gravitation ralentit le rythme de l'horloge

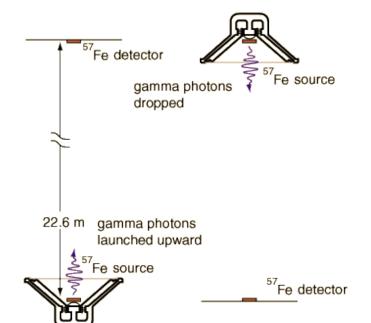
Explication à la Feynman

Soit un atome qui peut absorber un photon d'énergie : E₁- E₀= h.f



Expérience de Pound et Rebka, 1959

- * Tour à Harvard de 22 m de haut
- * 1 émetteur et 1 détecteur de rayon gamma
- * Mise en évidence du décalage grâce à l'effet Mössbauer : $\Delta f/f = 2.10^{-15}$



Lien avec le potentiel gravitationnel U

*
$$U(R) = -G.M_T/R$$

*
$$\Delta U = U(R_T + H) - U(R_T) = gH \text{ si H petit devant } R_T$$

* Décalage : ΔU/c²