48 ${ }^{\text {th }}$ International Chemistry Olympiad

Theoretical Problems

28 July 2016

Tbilisi, Georgia

Instructions

- Begin only when the START command is given. You have 5 hours to work on the problems.
- Use only the pen and calculator provided.
- The problem booklet has 23 pages, the answer sheet is 28 pages.
- Make sure that your code is on every page of the answer sheet.
- Questions are identical in the problem text and on the answer sheets.
- All results must be written in the appropriate boxes on the answer sheets. Anything written elsewhere will not be graded. Use the reverse of the problem pages if you need scratch paper.
- Write relevant calculations in the appropriate boxes when necessary. If you provide only correct end results for complicated questions, you will receive no score.
- Raise your hand if you need a restroom break.
- When you have finished the examination, put your answer sheets into the envelope provided. Do not seal the envelope.
- You can keep the problem booklet.
- You must stop your work immediately when the STOP command is given. A delay in doing this may lead to cancellation of your exam.
- Do not leave your seat until permitted by the supervisors.
- The official English version of this examination is available on request only for clarification.

Constants and formulae

Avogadro constant:	$N_{\mathrm{A}}=6.022 \cdot 10^{23} \mathrm{~mol}^{-1}$	Zero of the Celsius scale:	273.15 K
Gas constant:	$R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	Faraday constant:	$F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Ideal gas equation:	$p V=n R T$	Gibbs energy:	$G=H-T S$
$\Delta_{r} G^{o}=-R T \ln K=-n F E_{\text {cell }}^{o}$	Ionic product of water at $298.15 \mathrm{~K}:$	$K_{w}=10^{-14}$	
Nernst equation:	$E=E^{o}+\frac{R T}{n F} \ln \frac{c_{o x}}{c_{r e d}}=E^{o}+\frac{0.059 \mathrm{~V}}{n} \log \frac{c_{o x}}{c_{r e d}}$		
Beer-Lambert law:	$A=\log \frac{I_{0}}{I}=\varepsilon c l$		

Consider all gases ideal throughout the exam.
Periodic table with relative atomic masses

1	2											13	14		15	16		18	
$\stackrel{1}{\mathrm{H}}$															17		2 4.003		
$\begin{gathered} \hline \stackrel{3}{\mathrm{Li}} \\ 6.94 \end{gathered}$	$\begin{gathered} 4^{4} \\ \hline \end{gathered}$											$\begin{array}{\|c} \hline 5 \\ B_{108} \\ \hline \end{array}$	$\stackrel{6}{C}$				$\stackrel{8}{\mathrm{C}_{16.00}}$	$\stackrel{9}{\mathrm{~F}} \underset{19.00}{\stackrel{9}{2}}$	$\begin{array}{\|c} \hline 10 \\ \mathrm{Ne} \\ 20.18 \end{array}$
$\begin{gathered} 11 \\ \mathrm{Na} \end{gathered}$	$\begin{aligned} & 12 \\ & \mathrm{Mg}^{2} \end{aligned}$	3	4	5	6	7	8	9	10	11	12	$\begin{array}{r} 13 \\ \mathrm{Al} \end{array}$	$\stackrel{14}{\text { Si }}$			$\begin{aligned} & 16 \\ & S \end{aligned}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$	
$\begin{gathered} 19 \\ \mathrm{~K} \\ 39,10 \end{gathered}$	$\begin{aligned} & 20 \\ & \text { Ca } \\ & 40 \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	$\begin{gathered} 22 \\ \mathrm{Ti}_{47.87} \end{gathered}$	$\begin{array}{\|c} 23 \\ V \\ 50.94 \end{array}$	$\begin{gathered} 24 \\ \mathrm{Cr}_{52.00} \\ \hline \end{gathered}$	$\begin{array}{\|c} 25 \\ \mathrm{Mn} \\ 54.94 \\ \hline \end{array}$	$\begin{gathered} 26 \\ \text { Fe } \\ \hline 559 \end{gathered}$	$\begin{gathered} 27 \\ { }_{58}^{27} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 28 \\ \mathrm{Ni}_{58.69} \end{array}$	$\begin{array}{\|c\|} \hline 29 \\ \mathrm{Cu} \\ \mathrm{Cu} .55 \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ \mathrm{Zn} \\ \hline \end{array}$	$\begin{aligned} & { }^{31} \\ & \mathrm{G}, ~ \end{aligned}$		74		$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \\ & 79.90 \end{aligned}$	36 Kr 83	
$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \hline 38 \\ & \mathrm{Sr} \end{aligned}$ 87.62	$\begin{array}{\|c\|} \hline 39 \\ \text { Y } \\ 88.91 \end{array}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \\ & \mathrm{Za} \end{aligned}$	$\begin{array}{\|l\|} \hline 41 \\ \mathrm{Nb} \\ 020 \end{array}$	$\begin{gathered} 42 \\ \mathrm{Mo} \\ \mathrm{Mo5a5} \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$ 101.1	$\begin{aligned} & 45 \\ & \mathrm{Rh}^{2} \\ & \hline 102 \end{aligned}$	$\begin{aligned} & \hline 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{array}{\|l} \hline 47 \\ \mathrm{Ag} \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{gathered} 49 \\ \hline \text { 1n } \\ \text { 114.8 } \end{gathered}$	${ }_{\text {Sn }}^{50} \mathrm{Sn}$	12		$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \\ \hline 1 \end{gathered}$	$\begin{gathered} 53 \\ 1 \\ 126.9 \end{gathered}$	54 Xe 131.3	
$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{array}{\|l\|} \hline 56 \\ \mathrm{Ba} \end{array}$	57-71	$\underset{170}{72}$	$\begin{aligned} & 73 \\ & \text { Ta } \end{aligned}$	$\begin{gathered} 74 \\ W \\ W \end{gathered}$	Re^{75}	$\begin{aligned} & 76 \\ & \mathrm{Os} \\ & \hline \end{aligned}$	$\begin{gathered} 77 \\ \mathrm{Tr} \\ 192.2 \end{gathered}$	$\begin{array}{\|l} \hline 78 \\ \mathrm{Pt}_{105} \end{array}$	$\begin{array}{\|c} 79 \\ \mathrm{Au} \\ \hline 107 \end{array}$	$\begin{gathered} 80 \\ \mathrm{Hg} \end{gathered}$	$\begin{array}{\|c\|} \hline 81 \\ \text { T1 } \\ 204.4 \end{array}$	$\stackrel{82}{82}$			$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	${ }^{86}$	
$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{array}{\|l} \hline 88 \\ \text { Ra } \end{array}$	${ }_{103}^{89}$	$\begin{aligned} & 104 \\ & R f \end{aligned}$	$\begin{array}{\|l\|} \hline 105 \\ \mathrm{Db} \end{array}$	$\begin{array}{\|l} \hline 106 \\ \mathrm{Sg} \end{array}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$	$\begin{array}{\|} 108 \\ \mathrm{Hs} \end{array}$	$\begin{aligned} & 109 \\ & \text { Mt } \end{aligned}$	$\begin{aligned} & \hline 110 \\ & \text { Ds } \end{aligned}$	111 Rg	${ }^{112}$	$\begin{aligned} & 113 \\ & \mathrm{Nh} \end{aligned}$	${ }^{114} \mathrm{FI}$			Lv	$\begin{aligned} & 117 \\ & \mathrm{Ts} \end{aligned}$	118 Og	

$\begin{aligned} & \text { 57 } \\ & \text { La } \\ & \text { 138.9 } \end{aligned}$	$\begin{gathered} \text { 58 } \\ \text { Ce } \\ 1401 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{P}_{140.9} \\ \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{~N}_{144} \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm} \end{array}$	$\begin{gathered} \mathrm{S}_{\substack{62 \\ \text { 150.4 }}} \end{gathered}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Eu } \\ \text { Eu2.0 } \end{array}$	$\begin{gathered} 64 \\ \mathrm{Gd} \end{gathered}$	$\begin{array}{\|c} \hline 65 \\ \mathrm{~T}_{1589}^{65} \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \end{gathered}$	$\begin{array}{\|c} 67 \\ { }_{164}^{67} \end{array}$	$\begin{gathered} \hline 68 \\ E_{167.3} \end{gathered}$	$\begin{gathered} 69 \\ \hline{ }_{168.9}^{\mathrm{T}_{2}} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \\ & \text { 173.0 } \end{aligned}$	
89	90	91	92	93	${ }^{94}$	95	96	97	${ }^{98}$	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Problem 1

5\% of the total

Nitrogen trifluoride is a surprisingly stable compound that was first prepared in the melt electrolysis of a mixture of ammonium fluoride and hydrogen fluoride.
1.1. On which electrode does nitrogen trifluoride form? Write a balanced chemical equation for the electrode half reaction for the formation of NF_{3}.

Interestingly the related fluoroamine ($\mathrm{NH}_{2} \mathrm{~F}$) and difluoroamine (NHF_{2}) are very unstable materials; decomposition of either pure substance can even be explosive. This is dangerous as they are formed in the electrolysis as side products.

1.2. Which of $\mathrm{NF}_{3}, \mathrm{NHF}_{2}$ or $\mathrm{NH}_{2} \mathrm{~F}$ compound is expected to condense at the lowest temperature?

The N-F bond lengths in these molecules were determined to be 136,140 and 142 pm . The change in the bond lengths can be explained with a simple electrostatic model taking into account the partial charges on the atoms.
1.3. Assign the N-F bond lengths (136, 140, 142 pm) to the molecules.

When NHF_{2} is bubbled through a solution of KF in HF, a binary nitrogen - fluorine compound can be obtained as a mixture of two geometric isomers.
1.4. Write a balanced chemical equation for the formation of the binary nitrogenfluorine compound.

Tetrafluoroammonium ion $\left(\mathrm{NF}_{4}{ }^{+}\right)$and its corresponding salt can form from NF_{3} with elementary fluorine in the presence of an appropriate reagent.
1.5. Propose a suitable reagent and write a balanced chemical equation for the reaction.
$\mathrm{NF}_{4}{ }^{+}$ions form stable salts with a number of anions. These are very sensitive to humidity, because $\mathrm{NF}_{4}{ }^{+}$ion hydrolyzes forming NF_{3} and O_{2}. Interestingly nitrogen trifluoride always forms quantitatively, while the quantity of oxygen is often less than expected due to side reactions.
1.6. Write a balanced chemical equation for the hydrolysis of $\mathrm{NF}_{4}{ }^{+}$. Write a balanced chemical equation for a possible side reaction that can decrease the theoretically expected $\mathrm{O}_{2}: \mathrm{NF}_{3}$ mole ratio.

Tetrafluoroammonium salts were investigated for use as solid rocket fuels, because NF_{3} and F_{2} are released from them on heating. One of them has a fluorine content of $65.6 \mathrm{~m} / \mathrm{m} \%$, all of which is converted into NF_{3} and F_{2} upon decomposition. During the decomposition 2.5 times as many moles of F_{2} are formed as of NF_{3}.
1.7. Determine the formula of the salt in question.

Problem 2

8% of the total

One of the first materials used in solid state electronics was red copper(I) oxide. Interest is renewed nowadays because it could be a non-toxic and cheap component of solar cells.

The two figures above depict the cubic unit cell of the $\mathrm{Cu}_{2} \mathrm{O}$ crystal. The lattice constant of the structure is 427.0 pm .
2.1.1. Which of the atoms (A or B) is copper?

Which basic structure (primitive cubic, face centered cubic, body centered cubic, diamond) is formed by the A atoms and which structure is formed by the B atoms?
What are the coordination numbers of the atoms?
2.1.2. Calculate the smallest $\mathrm{O}-\mathrm{O}, \mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{Cu}$ distances in the structure.
2.1.3. What is the density of pure copper(I) oxide?

A common defect in this crystal is some copper atoms missing with the oxygen lattice unchanged. The composition of one such crystal sample was studied, and 0.2% of all copper atoms were found to be in oxidation state +2 .
2.2. What percentage of normal copper sites are empty in the crystal sample? What is x in the empirical formula $\mathrm{Cu}_{2-x \mathrm{O}}$ of the crystal?

Copper(I) oxide is insoluble in water. It is stable in dry air, but humidity in the air catalyzes a transformation (Reaction 1).

When copper(I) oxide is dissolved in dilute sulfuric acid, a blue solution containing a precipitate is formed without evolution of a gas (Reaction 2). When hot, concentrated sulfuric acid is used, no precipitate remains, but an odorous gas forms (Reaction 3). The same gas forms when the precipitate from reaction 2 is dissolved in hot concentrated sulfuric acid.
2.3. Write balanced chemical equations for reactions (1-3).

Copper(I) oxide can be produced in a number of ways. Heating copper in air is a common method in the synthesis of semiconductor $\mathrm{Cu}_{2} \mathrm{O}$. In a pure oxygen atmosphere, the three species containing copper ($\mathrm{Cu}(\mathrm{s}), \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$ or $\mathrm{CuO}(\mathrm{s})$) can potentially interconvert.

Suppose that the $\Delta_{\mathrm{f}} H^{\circ}$ and S° data given for $10^{5} \mathrm{~Pa}$ are independent of temperature:

	$\Delta_{\mathrm{f}} H^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$	$S^{\circ} / \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{Cu}(\mathrm{s})$	0	65
$\mathrm{O}_{2}(\mathrm{~g})$	0	244
$\mathrm{CuO}(\mathrm{s})$	-156	103
$\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$	-170	180

2.4. Determine the temperature ranges, if any, of thermodynamic stability of copper and its oxides between 500 and 1500 K in a $10^{5} \mathrm{~Pa}$ oxygen atmosphere.

Important data are given for 298 K . Use this temperature in the following calculations:

$$
\begin{array}{ll}
K_{\mathrm{sp}}\left(\mathrm{Cu}(\mathrm{OH})_{2}\right)=2 \cdot 10^{-19} & \\
\mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cu}(\mathrm{~s})+2 \mathrm{H}^{-}(\mathrm{aq}) & E^{0}=-0.360 \mathrm{~V} \\
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq}) & E^{0}=+0.159 \mathrm{~V} \\
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) & E^{0}=+0.337 \mathrm{~V}
\end{array}
$$

One possibility for producing $\mathrm{Cu}_{2} \mathrm{O}$ is the anodic oxidation of copper. Electrolysis of an aqueous basic solution (e.g. NaOH) with a copper anode and platinum cathode can lead to formation of copper(I) oxide on the anode.
2.5. Write the half reaction equations for the electrode processes during the anodic production of $\mathrm{Cu}_{2} \mathrm{O}$ in NaOH solution with a platinum cathode and copper anode.

Electrolytic reduction of copper(II) ions in solution is another possibility.
2.6.1. Write the half reaction equation of the cathode process giving $\mathrm{Cu}_{2} \mathrm{O}$ in acidic medium.

Let us use $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Cu}^{2+}$ solution and carry out electrolysis with platinum electrodes.
2.6.2. What is the maximum pH at which the concentration of copper(II) can be maintained at $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$?

If the pH is too low, reduction to metallic copper is preferred to the formation of copper(I) oxide.
2.6.3. What is the minimum pH at which the cathodic production of $\mathrm{Cu}_{2} \mathrm{O}$ in a 0.100 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{Cu}^{2+}$ solution is still possible?

Problem 3

9% of the total

Iodine deficiency is of special concern in Georgia because it occupies a region where iodine is scarce in soil and water. Iodine deficiency can be effectively and inexpensively prevented if salt for human consumption is fortified with small amounts of iodine. Methods for analyzing salt for iodine content are thus important. Current regulations in Georgia are that iodized salt must contain between $25-55 \mathrm{ppm}$ iodine $(1 \mathrm{ppm}=$ 1 mg iodine $/ \mathrm{kg}$ salt).

Most salt is iodized by fortification with potassium iodate (KIO_{3}). Iodate content can be determined in salt samples using iodometric titration. In a typical procedure, 10.000 g of an iodized salt sample is dissolved in $100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ aqueous HCl to which 1.0 g KI has been added. The solution is then titrated with $0.00235 \mathrm{~mol} / \mathrm{dm}^{3}$ aqueous sodium thiosulfate solution to a starch endpoint; this requires $7.50 \mathrm{~cm}^{3}$ of titrant.
3.1.1. Write a balanced net ionic equation for the reaction when iodate reacts with excess iodide in acidic solution.
3.1.2. Write a balanced net ionic equation for the reaction taking place during the titration with thiosulfate.
3.1.3. Calculate the iodization level, in ppm, of this salt sample.

A less common agent for iodizing salt is potassium iodide, which cannot be easily measured by iodometric titration.

One possible method for analyzing iodide in the presence of chloride is potentiometric titration. However, this method is not very precise in the presence of large amounts of chloride.

In this method, a silver wire is immersed in the solution (containing iodide and chloride) to be analyzed and silver ion is gradually added to the solution. The potential of the silver wire is measured relative to a reference electrode consisting of a silver wire in a $1.000 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of AgNO_{3}. The measured potentials are negative and the absolute values of these potentials are reported. The solution to be analyzed has a volume of $1.000 \mathrm{dm}^{3}$ (which you may assume does not change as silver ion is added), and $T=25.0^{\circ} \mathrm{C}$.

The results of this experiment are governed by three equilibria: the solubility of $\operatorname{AgI}(s)$ [$\left.K_{\text {spl }}\right]$ and $\mathrm{AgCl}(\mathrm{s})\left[K_{\mathrm{spcl}}\right]$ and the formation of $\mathrm{AgCl}_{2}{ }^{-}(\mathrm{aq})$ [Kf_{f}. (Iodide also forms complex ions with silver but this may be neglected at the very low concentrations of iodide present in this experiment).

$$
\begin{array}{ll}
\mathrm{AgI}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) & K_{\mathrm{spl}} \\
\operatorname{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) & K_{\mathrm{spcl}} \\
\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{AgCl}_{2}^{-}(\mathrm{aq}) & K_{\mathrm{f}}
\end{array}
$$

Below are shown the results of two experiments measuring the observed potential as a function of added number of moles of silver ion. Experiment \mathbf{A} (solid circles) was carried out with $1.000 \mathrm{dm}^{3}$ of solution containing $1.00 \cdot 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$ iodide and no chloride ion. Experiment B (open circles) was done using $1.000 \mathrm{dm}^{3}$ of solution containing $1.00 \cdot 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$ iodide and $1.00 \cdot 10^{-1} \mathrm{~mol} / \mathrm{dm}^{3}$ chloride.

3.2.1. Select an appropriate data point from the experiments and use it to calculate the solubility product of $\mathrm{AgI}\left(K_{\text {spI }}\right)$.
3.2.2. Select an appropriate data point from the experiments and use it to calculate the solubility product of $\mathrm{AgCl}\left(K_{\mathrm{spcl}}\right)$.
3.2.3. Select an appropriate data point from the experiments and use it to calculate K f. You may need to use values of $K_{\text {spl }}$ or $K_{\text {spcl }}$ to do this calculation. If you were unable to carry out the calculations in 3.2.1. or 3.2.2., you may use the arbitrary values of $K_{\mathrm{spl}}=1.00 \cdot 10^{-15}$ and $K_{\mathrm{spcl}}=1.00 \cdot 10^{-9}$ without penalty.

An analytical method that is more practical, because it is not sensitive to the presence of chloride, uses the Sandell-Kolthoff reaction. This is the reaction of $\mathrm{H}_{3} \mathrm{AsO}_{3}$ with Ce (IV) to give Ce(III) in acidic solution, which is strongly catalyzed by iodide ion.
3.3.1. Write balanced net ionic equations for the reaction of cerium(IV) with $\mathrm{H}_{3} \mathrm{AsO}_{3}$ in acidic solution, as well as reactions of cerium(IV) with a species containing the element iodine and $\mathrm{H}_{3} \mathrm{AsO}_{3}$ with a species containing the element iodine, that could reasonably account for the catalysis of the net reaction by iodide.

The reaction of $\mathrm{Ce}(\mathrm{IV})$ with $\mathrm{H}_{3} \mathrm{AsO}_{3}$ can be monitored by measuring the absorbance at 405 nm , as Ce(IV) is orange and absorbs significantly at 405 nm , while the other reactants and products are colorless and do not absorb appreciably. Three runs were carried out, all in $0.50 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $25.0^{\circ} \mathrm{C}$ using the following initial concentrations:

Run	$\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right]_{0}$, $\mathrm{mol} \mathrm{dm}^{-3}$	$[\mathrm{Ce}(\mathrm{IV})]_{0}$, $\mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{I}^{-}\right]_{0,}$, $\mathrm{mol} \mathrm{dm}^{-3}$
1	0.01250	0.00120	$1.43 \cdot 10^{-6}$
2	0.00625	0.00060	$1.43 \cdot 10^{-6}$
3	0.01250	0.00120	$7.16 \cdot 10^{-7}$

An analyst initiated the reactions by mixing the reagents in a cuvette. After a short variable delay absorbance measurements were started, with the first measurement recorded at $t=0 \mathrm{~s}$. The data obtained are shown below:

$t, \mathrm{~s}$	A_{405} Run 1	A_{405} Run 2	A_{405} Run 3
0	0.621	0.287	0.818
20	0.348	0.149	0.608
40	0.198	0.083	0.455
60	0.113	0.046	0.340
80	0.064	0.025	0.254
100	0.037	0.014	0.191

Under these conditions ($0.5 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}, 25.0^{\circ} \mathrm{C}$), the rate law for the reaction can be written as

Rate $=k\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right]^{m}[\mathrm{Ce}(\mathrm{IV})]^{n}\left[\mathrm{I}^{-}\right]^{p} \quad$ where m, n, and p are integers.
3.3.2. Determine the values of m, n, and p and calculate the value of k (be sure to specify its units).

A 1.000 g sample of iodized salt is dissolved in water to give $10.00 \mathrm{~cm}^{3}$ of solution. A $0.0500 \mathrm{~cm}^{3}$ aliquot of this solution is added to a mixture of $1.000 \mathrm{~cm}^{3} 0.025 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{H}_{3} \mathrm{AsO}_{3}$ in $0.5 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ and $0.800 \mathrm{~cm}^{3} 0.5 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$. To this mixture is added $0.200 \mathrm{~cm}^{3} 0.0120 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$ in $0.5 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ and the absorbance at 405 nm is measured as a function of time at $25.0^{\circ} \mathrm{C}$:

$t, \mathrm{~s}$	A_{405}
0	0.756
20	0.531
40	0.373
60	0.262
80	0.185
100	0.129

3.3.3. Calculate the iodization level, in ppm, of this salt sample.

Problem 4

8% of the total

Application of kinetic studies in water treatment

Industrial waste is a major cause of water pollution and kinetic studies are carried out in a laboratory to design effluent treatment. 1,4-dioxane, more commonly known as dioxane ($\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$), an industrial solvent and by-product, is a significant water contaminant. It can be oxidised to hazard free chemicals using oxidants such as peroxodisulfate, ozone or hydrogen peroxide.

The data obtained in the kinetic study of oxidation of dioxane with potassium peroxodisulfate $\left(\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right)$ as oxidant and AgNO_{3} as catalyst at $T=303.15 \mathrm{~K}$ are given below. The reaction was monitored by the estimation of unreacted peroxodisulfate. The concentration of AgNO_{3} used in this study was $1.00 \cdot 10^{-3} \mathrm{mmol} \cdot \mathrm{dm}^{-3}$.

Trial	Dioxane $\mathrm{mmol} \cdot \mathrm{dm}^{-3}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ $\mathrm{~mol} \cdot \mathrm{dm}^{-3}$	Initial rate $\mathrm{mmol} \cdot \mathrm{dm}^{-3} \cdot \mathrm{~min}^{-1}$
1	0.0100	2.50	$1.661 \cdot 10^{-2}$
2	0.0100	5.10	$3.380 \cdot 10^{-2}$
3	0.00500	13.8	$9.200 \cdot 10^{-2}$
4	0.0110	13.8	$9.201 \cdot 10^{-2}$

In many countries the accepted maximum level of dioxane in drinking water is specified as $0.35 \mu \mathrm{~g} \mathrm{dm}{ }^{-3}$.

A water sample contains an initial dioxane concentration of $40.00 \mu \mathrm{~g} \mathrm{dm}^{-3}$. Assume that 1 mol dioxane requires 1 mol of peroxodisulfate for oxidation. The concentration of AgNO_{3} used in this study was $1.00 \cdot 10^{-3} \mathrm{mmol} \cdot \mathrm{dm}^{-3}$.
4.1.1. Calculate the time in minutes the oxidation process has to continue in order to reach the accepted level of dioxane at 303.15 K if the initial concentration of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is $5.0 \cdot 10^{-6} \mathrm{~mol} \mathrm{dm}{ }^{-3}$. Assume that the rate law obtained from the data above is valid under these conditions.

Various mechanisms have been proposed for the peroxodisulfate oxidation of dioxane. Misra and Ghosh (1963) proposed the following mechanism:

$$
\begin{aligned}
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{Ag}^{+} & \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{Ag}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \\
& \mathrm{Ag}^{3+}+\mathrm{D} \text { (dioxane) } \\
\stackrel{k_{3}}{\longrightarrow} & \mathrm{D}^{\prime} \text { (dioxane oxidised) }+2 \mathrm{H}^{+}+\mathrm{Ag}^{+}
\end{aligned}
$$

4.1.2. Assuming $\operatorname{Ag}(I I I)$ to be in steady state, deduce the rate equation for the oxidation of dioxane.
4.1.3. Which of the following is/are correct?
A) The rate equation based on the mechanism given in 4.1.2, at very high concentrations of dioxane, is consistent with the experimental data in 4.1.1. B) The rate equation based on the mechanism given in 4.1.2, at very low concentrations of dioxane, is consistent with the experimental data in 4.1.1.
C) The units of the observed rate constant are $\mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$ at very high concentrations of dioxane.
D) The units of the observed rate constant are $\mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$ at very low concentrations of dioxane.

Degradation of pharmaceutical products - a kinetic overview

Kinetic studies are important in deciding the shelf life of a pharmaceutical product. Several chemical reactions can affect the shelf life of pharmaceutical products and the rates of these reactions depend on conditions such as pH , temperature, humidity.
Lysine acetylsalicylate (LAS) is prescribed as a pain killer and anti-inflammatory drug under the brand name Aspegic. LAS on hydrolysis forms lysine salicylate and acetic acid.

Hydrolysis of LAS can proceed via three different pathways (a) acid catalysed, (b) uncatalysed and (c) base catalysed.

If [LAS] denotes the concentration of LAS at time ' t ', the overall rate of the hydrolysis reaction can be written as

$$
-\frac{d[\mathrm{LAS}]}{d t}=\mathrm{k}_{\mathrm{H}}[\mathrm{LAS}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{0}[\mathrm{LAS}]+\mathrm{k}_{\mathrm{OH}}[\mathrm{LAS}]\left[\mathrm{OH}^{-}\right]
$$

where k_{H}, k_{0} and $k_{0 \mathrm{H}}$ are the rate constants of the acid catalysed, uncatalysed and base catalysed pathways of hydrolysis, respectively. The observed rate constant is defined by:

$$
-\frac{d[\mathrm{LAS}]}{d t}=\mathrm{k}_{\mathrm{obs}}[\mathrm{LAS}]
$$

4.2.1. Write an expression for k_{obs} in terms of $k_{\mathrm{H}}, k_{0}, k_{0 \mathrm{H}}$ and $\left[\mathrm{H}^{+}\right]$.

Hydrolysis of LAS was carried out at 298.15 K at various pH values (0.50 to 13.0). A very low initial concentration of LAS ensured that the pH did not change during the course of the reaction.

The following graph shows the pH dependence of the hydrolysis of LAS.

4.2.2. Which of the following is/are correct?
A) $k_{\text {obs }} \cong k_{0}$ at $\mathrm{pH}=12$
B) $k_{\text {obs }} \cong k_{0}$ at $\mathrm{pH}=5.0$
C) The rate of the reaction increases when the pH is changed from 0.50 to 1.0 .
D) The rate of the reaction increases when the pH is changed from 10 to 12.
4.2.3. Using the diagram and the data given below, calculate k_{H}, k_{0} and $\boldsymbol{k о н}^{\boldsymbol{c}}$. Make sure to specify the units.

pH	1.300	5.300	12.180
$\log \left(k_{\text {obs }} / \mathrm{min}^{-1}\right)$	-3.886	-4.000	-1.726

Acetylsalicylic acid, more commonly known as aspirin, is a medicine often used for reducing fever, pain and inflammation. Like LAS, the hydrolysis of aspirin can also take different pathways depending on the pH . The pH rate profile of aspirin hydrolysis at 333.15 K is given below:

The following are possible reactions for the hydrolysis of aspirin. Depending on the pH , one or more of these reactions will predominate.
I. $\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}^{+}$
II. $\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COOH}$
III. $\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}+\mathrm{CH}_{3} \mathrm{COOH}$
IV. $\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COOH}$
V. $\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}+\mathrm{CH}_{3} \mathrm{COOH}$
VI. $\quad \mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
4.3.1. Using the pH -rate profile diagram and the reactions given above, state which of the following statements is/are correct. ($\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ of aspirin $=3.57$ at 333.15 K)
a) In the region C-D, reaction IV is predominant
b) In the region C-D, reaction V is predominant
c) In the region D-E reaction VI is predominant
d) In the region $A-B$, reaction II is predominant

A separate plot of $k_{\mathrm{obs}} \mathrm{vs} \mathrm{pH}$ for the hydrolysis of aspirin has been confirmed to show a minimum at a particular pH . At $\mathbf{2 9 0 . 1 5} \mathbf{K}$ the following rate constants for reactions I, II and III were determined:

k_{H} (reaction I)	k_{0} (reaction II)	$k_{\text {OH }}$ (reaction III)
$1.99 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot$ day $^{-1}$	$2.29 \cdot 10^{-4} \mathrm{day}^{-1}$	$3.18 \cdot 10^{9} \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot$ day $^{-1}$

The ionic product of water at 290.15 K can be taken as $1.0 \cdot 10^{-14}$.
4.3.2. Assuming that only reactions I, II and III occur, calculate the value of the pH at the minimum of $k_{\text {obs }}$.

Problem 5

8% of the total

5500 years ago in ancient Egypt people learned for the first time how to synthesize a blue pigment. Now we know this pigment as Egyptian blue. About 2000 years later in ancient China another pigment was widely used, which is now referred to as Chinese blue. The two pigments are similar in structure, but have different elemental compositions.

Ushabti figurines from Egyptian pharaoh tomb covered with Egyptian blue and a Chinese blue soap dispenser sold at Alibaba

The ancient method of preparation for these pigments can be easily reproduced in a modern laboratory.

When considering the amounts, assume that all of the compounds in this task are pure, and the yields are quantitative.

To make Egyptian blue, one should heat 10.0 g of mineral \mathbf{A} with 21.7 g of SiO_{2} and 9.05 g of mineral \mathbf{B} at $800-900^{\circ} \mathrm{C}$ for a prolonged time. $16.7 \mathrm{dm}^{3}$ of a mixture of two gaseous products are released (the volume is measured at $850^{\circ} \mathrm{C}$ and $1.013 \cdot 10^{5} \mathrm{~Pa}$ (1.013 bar) pressure. In result, 34.0 g of the pigment was obtained. No other products are formed. As the gas mixture is cooled, one component of the mixture condenses. As the remaining gas is further cooled to $0^{\circ} \mathrm{C}$, the gaseous volume reduces to $3.04 \mathrm{dm}^{3}$.
5.1.1. Find the mass of the gaseous mixture formed upon heating of \mathbf{A} with \mathbf{B} and SiO_{2}.
5.1.2. Determine the quantitative composition of this gas mixture.

When 10.0 g of mineral \mathbf{A} is heated with 21.7 g of SiO_{2} in the absence of \mathbf{B}, it forms $8.34 \mathrm{dm}^{3}$ of gaseous products (measured at $850^{\circ} \mathrm{C}$ and $1.013 \cdot 10^{5} \mathrm{~Pa}=1.013 \mathrm{bar}$ pressure). Mineral A contains only one metal.
5.1.3. Calculate the molar mass and determine the formula of mineral B. Hint: it is an ionic solid insoluble in water and containing no water of crystallization.

In order to obtain Chinese blue, one should take 17.8 g of mineral \mathbf{C} instead of mineral \mathbf{B} (keeping the amounts of mineral \mathbf{A} and SiO_{2} same as for Egyptian blue), and run the reaction at higher temperatures. Besides the pigment, the same gaseous products in the same quantities are formed as in the preparation of Egyptian blue.
5.1.4. Determine the formula of mineral \mathbf{C}.
5.1.5. Determine the formulae of Egyptian blue and Chinese blue.
5.1.6. Determine the formula of mineral \mathbf{A}.

Elemental analysis of some samples of Chinese blue shows traces of sulfur. This led to a conclusion that those were synthesized using another common mineral instead of \mathbf{C}.
5.2.1. Suggest a formula for the mineral used in place of \mathbf{C}.
5.2.2. Could the temperature of synthesis of Chinese blue be decreased if this mineral is used instead of \mathbf{C} ?

If during the synthesis of Chinese blue we take a smaller amount of silica than in the process above, we will obtain a purple pigment: Chinese violet. It was used, in particular, for coloring the famous Terracotta army soldiers.

Terracotta army from Xian, China and reconstruction of its original coloring
5.3. Write down the formula of a binary compound that forms under the conditions required for Chinese violet and is responsible for the change of the color.

Problem 6

7\% of the total

Although there is currently no known cure for Alzheimer's disease, there are medications available to manage the neurodegenerative disorder. Among these are acetylcholinesterase inhibitors, of which galantamine 1 is an example. This molecule can be isolated from the Caucasian snowdrop, a plant native to Georgia; however, the large amounts needed for therapy require a synthetic route. Shown below is the route used to prepare galantamine industrially.

Notes about the synthesis:

- ${ }^{1} \mathrm{H}$ NMR of \mathbf{A} indicates 2 aromatic protons in a para arrangement.
- \mathbf{C} is labile in aqueous conditions, so it is not isolated, but rather reacted immediately with NaBH_{4} to convert it to \mathbf{D}.
6.1.1. Suggest structures for $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{F}$, and \mathbf{G}. None of the reactions except for the final transformation with L-selectride are stereoselective. Therefore, stereochemistry does not need to be indicated in your answers.
6.1.2. Give the formula for a possible reagent, \mathbf{X}, to convert compound \mathbf{D} to \mathbf{E}.

The optical rotation of the material obtained by resolution was $-400^{\circ} \mathrm{cm}^{2} \mathrm{~g}^{-1}$, while that of the enantiomerically pure compound is $-415^{\circ} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ when measured under the same conditions. You may assume that the only optical impurity is the other enantiomer.

One way of describing optical purity is enantiomeric excess ($e e$). It is defined as the difference in the percentages of the enantiomers in a mixture. For example in a mixture of $70 \% R$ and $30 \% S$, the $e e$ is 40%.
6.2.1. What is the enantiomeric excess of the resolved compound as prepared by the industrial route?

L-selectride is a commercial reagent that performs the final reaction stereoselectively.
6.2.2. Assign the labelled stereocentres (α, β, γ) in $(-)-1$ as R or S.
6.2.3. Give the formula for a reagent that carries out the same reaction as L-selectride, converting \mathbf{H} to $\mathbf{1}$. You need not worry about stereoselectivity.

An alternative route to galantamine occurs with the seven-membered ring being the last ring to form.

6.3.1. Give the formula for compound \mathbf{Y} to carry out the first step of the route.
6.3.2. Suggest structures for \mathbf{J} and \mathbf{K}.

Problem 7

8% of the total

This question looks at the synthesis of dolasetron mesylate, \mathbf{Z} (shown right), a drug sold under the tradename Anzemet and used to treat postoperative nausea and vomiting.

The synthesis begins as shown below.

First cyclic compound \mathbf{A} is made, which contains C, H, and O only. Compound \mathbf{G} is achiral and can be prepared directly from \mathbf{D} using ozone under reductive conditions, or via stereoisomers E1 and E2 using OsO4, or via stereoisomers F1 and F2 using the peracid shown.
7.1. Determine the empirical formula of \mathbf{G} from the percentage masses given.
7.2. Give the structures of A, B, C, D, E1, E2, F1, F2 and G.

Compound \mathbf{G} is used in the next stage of the synthesis, under buffered conditions, to form \mathbf{H} (as a mixture of two achiral diastereoisomers). Reduction of \mathbf{H} with NaBH_{4} gives alcohol I (as a mixture of four achiral diastereoisomers). I reacts with acidified dihydropyran to form \mathbf{J} (as a mixture of even more diastereoisomers). \mathbf{J} is then treated first with t-butoxide base, then refluxed with acid before finally extracting under weakly basic conditions to form \mathbf{K} as a mix of two diastereomers, $\mathbf{K} \mathbf{1}$ (major product) and $\mathbf{K} \mathbf{2}$ (minor product). These could be separated, and $\mathbf{K 1}$ was used in the final stages of the synthesis.

7.3.1. Give the structures of \mathbf{H}, \mathbf{I}, and \mathbf{J}. There is no need to show the different diastereoisomers formed.
7.3.2. Give the structures of diastereoisomers K1, and K2.

In the final stage of the synthesis, \mathbf{L} and \mathbf{M} react to form intermediate \mathbf{N}. \mathbf{N} then reacts with K1 to form, after extraction, the neutral amine which gives the target compound upon protonation with $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$.

7.4. Give the structure of \mathbf{N}.

Problem 8

7\% of the total

An exotic, but biologically relevant sugar analogue can be prepared from D-glucose in the following manner. Heating a mixture of D-glucose and acetone with a few drops of concentrated acid results in the formation of a diacetonide \mathbf{A}. Then \mathbf{A} can be hydrolyzed selectively to B.

D-glucose

A

B
8.1.1. Which of the following sentences is true?
\mathbf{A} is an α isomer.
\mathbf{A} is a β isomer.
A is neither α nor β.
A is a mixture of α and β isomers.
8.1.2. Which of the following sentences is true?

We can get product \mathbf{A} only if we use α-D glucose as starting material.
We can get product \mathbf{A} only if we use β-D glucose as starting material.
We can get product \mathbf{A} either from α - or from β-D glucose as starting material.
8.1.3. Which one of these reagents can be utilized as \mathbf{X} for the selective hydrolysis of

A?

50\% acetic acid
6 M HCl in water
6 M HCl in acetic acid
concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
1 M NaOH in water
8.1.4. Which is the stereochemically correct structure for compound \mathbf{B} ?

Neither of these
\mathbf{B} is treated with sodium metaperiodate to get $\mathbf{C} . \mathbf{C}$ is then reacted with an aqueous solution of NaCN , then heated with $10 \% \mathrm{NaOH}$ solution to get a mixture of two diastereomeric compounds \mathbf{D}_{1} and \mathbf{D}_{2}. These compounds can be separated by column chromatography.

$188.2 \mathrm{~g} / \mathrm{mol}$
Reaction of \mathbf{D}_{1} with LiAlH_{4} followed by heating with 1 M HCl solution gives sugar \mathbf{F} that is the hydrolysis product of the most abundant natural polysaccharide.

$$
\mathrm{LiAlH}_{4} \quad 1 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}
$$

$\mathbf{D}_{1} \longrightarrow \mathbf{E}$
$\mathrm{E} \longrightarrow$

F

8.2.1. Draw the structures of $\mathbf{C}, \mathbf{D}_{1}, \mathbf{D}_{2}, \mathbf{E}$ and \mathbf{F} including stereochemical information. Show \mathbf{F} as the more stable 6-membered ring containing isomer using the ring skeleton. Indicate with a wavy line if absolute chirality around a carbon is not known.
8.2.2. The reaction sequence from glucose to \mathbf{F} does not seem to be useful. In some cases, however, this is the most economical way to produce \mathbf{F}. In which case?
${ }^{13} \mathrm{C}$ labelling at carbon 6 of \mathbf{F}
${ }^{13} \mathrm{C}$ labelling at carbon 5 of \mathbf{F}
${ }^{13} \mathrm{C}$ labelling at carbon 1 of \mathbf{F}
${ }^{15} \mathrm{O}$ labelling at glycosidic $\mathbf{O H}$ of \mathbf{F}
synthesis of an uncommon isomer of \mathbf{F}
Neutralization of $\mathbf{D}_{\mathbf{2}}$ with HCl followed by heating in toluene results in dehydration and formation of \mathbf{G}, which has a tricyclic structure in water-free solvents. Boiling \mathbf{G} in 1 M HCl solution gives $\mathbf{H}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{7}\right)$, which is a natural sugar derivative containing a 6 membered ring. \mathbf{H} is a building block of heparin, an anticoagulant polysaccharide produced by our bodies.

1. Equimolar HCl
2. Heat, toluene $\quad 1 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$
$\mathbf{D}_{2} \longrightarrow \mathbf{G}$
$-\mathrm{H}_{2} \mathrm{O}$
8.3.1. Draw the structure of \mathbf{G} including the stereochemistry.

Draw \mathbf{H} as the more stable 6-membered ring containing isomer using the ring skeleton. Indicate with a wavy line if absolute chirality around a carbon is not known.
8.3.2. How are the rings of \mathbf{G} fused together?
both junctions cis
one cis and one trans junction
both junctions trans
8.3.3. Which of the following is true for \mathbf{H} ? (You can choose more than one option.)
\mathbf{H} is a reducing sugar (reacts with Fehling's reagent)
\mathbf{H} is an aldaric acid (dicarboxylic derivative of an aldose)
\mathbf{H} is an aldonic acid (C 1 is a carboxyl group)
\mathbf{H} is a uronic acid (C5 or C6 is a carboxyl group)
\mathbf{H} is a ketose
\mathbf{H} is a lactone
\mathbf{H} is a D sugar
\mathbf{H} is achiral
\mathbf{H} is a meso compound

TBIISI, GEORGIA JULY 23 - AUGUST 1, 2016

48 ${ }^{\text {th }}$ International Chemistry Olympiad

Theoretical Problems Answer sheets

28 July 2016
Tbilisi, Georgia

Problem 1

5\% of the total

1.1.	1.2.	1.3.	1.4.	1.5.	1.6.	1.7.	Sum
3	1	2	2	2	4	3	17

1.1. On which electrode does nitrogen trifluoride form?
\square Cathode \square Anode

Write a balanced chemical equation for the electrode half reaction for the formation of NF_{3}.
$\mathrm{NH}_{4}++3 \mathrm{~F}^{-} \rightarrow \mathrm{NF}_{3}+4 \mathrm{H}^{+}+6 \mathrm{e}^{-}$or $\mathrm{NH}_{4} \mathrm{~F}+2 \mathrm{HF} \rightarrow \mathrm{NF}_{3}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}$or equ.
$3 \mathrm{p}(1 \mathrm{p}$ choosing anode, 1 p species, 1 p coefficients)
1.2. Which of $\mathrm{NF}_{3}, \mathrm{NHF}_{2}$ or $\mathrm{NH}_{2} \mathrm{~F}$ compound is expected to condense at the lowest temperature?
$\square \mathrm{NF}_{3} \quad \square \mathrm{NHF}_{2} \quad \square \mathrm{NH}_{2} \mathrm{~F} \quad \mathrm{NF}_{3}$
1.3. Assign the N-F bond lengths ($136,140,142 \mathrm{pm}$) to the molecules.

Molecule	$\mathrm{NH}_{2} \mathrm{~F}$	NHF_{2}	NF_{3}
$\mathrm{N}-\mathrm{F}$ bond length, pm			

The partial positive charge on N increases in this order, so the attraction also increases between the N and F .
1.4. Write a balanced chemical equation for the formation of the binary nitrogen fluorine compound.

```
2 NHF2 + 2 KF }->\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{F}}{2}{2}+2\mp@subsup{\textrm{KHF}}{2}{}\mathrm{ or 2 NHF2}->\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{F}}{2}{}+2\textrm{HF
2p (1p N2F2,1p equation)
```

1.5. Propose a suitable reagent for the formation of $\mathrm{NF}_{4}{ }^{+}$and write a balanced chemical equation for the reaction.
$\mathrm{NF}_{3}+\mathrm{F}_{2}+\mathrm{SbF}_{5} \rightarrow \mathrm{NF}_{4}{ }^{+}+\mathrm{SbF}_{6}{ }^{-} \quad$ any strong fluoride acceptor $\left(\mathrm{AsF}_{5}, \mathrm{BF}_{3}\right)$
2 p (1p species, 1 p coefficients)
1.6. Write a balanced chemical equation for the hydrolysis of $\mathrm{NF}_{4}{ }^{+}$.

$$
\begin{aligned}
& 2 \mathrm{NF}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NF}_{3}+\mathrm{O}_{2}+2 \mathrm{HF}+2 \mathrm{H}^{+} \Rightarrow n\left(\mathrm{O}_{2}\right): n\left(\mathrm{NF}_{3}\right)=1: 2 \\
& 2 \mathrm{p} \text { (1p species, } 1 \mathrm{p} \text { coefficients) }
\end{aligned}
$$

Write a balanced chemical equation for a possible side reaction that can decrease the theoretically expected $\mathrm{O}_{2}: \mathrm{NF}_{3}$ mole ratio.

```
e.g.: }\mp@subsup{\textrm{NF}}{4}{+}+2\mp@subsup{\textrm{H}}{2}{}\textrm{O}->\mp@subsup{\textrm{NF}}{3}{}+\mp@subsup{\textrm{H}}{2}{}\mp@subsup{O}{2}{}+\textrm{HF}+\mp@subsup{\textrm{H}}{}{+}\quad\textrm{HOF},\mp@subsup{\textrm{O}}{3}{},\mp@subsup{\textrm{OF}}{2}{}\mathrm{ also accepted.
2p (1p species, 1p coefficients)
```

1.7. Determine the formula of the salt in question.

Your work:

From the NF_{3} : F_{2} ratio it is clear that the anion also contains fluorine. Moreover, the starting $\mathrm{NF}_{4}{ }^{+}$: liberated F_{2} ratio is $1: 2$, and all fluorine content is released. With a $\left(\mathrm{NF}_{4}\right)_{x} \mathbf{A F}_{y}$ composition, $x: y=1: 4$.
$\frac{8 x M(\mathrm{~F})}{8 x M(\mathrm{~F})+x M(\mathrm{~N})+M(\mathrm{~A})}=0.656 \Rightarrow \frac{M(\mathrm{~A})}{x}=65.7 \mathrm{~g} / \mathrm{mol}$
With $x=1$, the atomic mass of \mathbf{A} is close to zinc, but not all fluorine would be released with Zn . If $x=2$, then the element is xenon, and the formula is $\left(\mathrm{NF}_{4}\right)_{2} \mathrm{XeF}_{8}$

3p (1.5p for Zn)
Formula:

Problem 2
 8\% of the total

2.1.1	2.1.2	2.1.3	2.2	2.3	$\mathbf{2 . 4}$	$\mathbf{2 . 5}$	$\mathbf{2 . 6 . 1}$	$\mathbf{2 . 6 . 2}$	$\mathbf{2 . 6 . 3}$	Sum
5	3	2	2	3	6	2	1	3	6	33

2.1.1. Which of the atoms (A or B) is copper?

Cu: \quad There are 2 A atoms and 4 B atoms in the cell. Cu: B
Which basic structure (primitive cubic, face centered cubic, body centered cubic, diamond) is formed by the A atoms and which structure is formed by the B atoms?

	pr. cubic	fcc	bcc	diamond
A				
B				

What are the coordination numbers of the atoms?

A:	B:	B: 2
	A: 4	

2.1.2. Calculate the smallest $\mathrm{O}-\mathrm{O}, \mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{Cu}$ distances in the structure.

Your work:
0-0: \quad O-O: half of the cell body diagonal $1 / 2 \cdot 427.0 \mathrm{pm} \cdot \sqrt{3}=369.8 \mathrm{pm}$. Cu-0: $1 / 4^{\text {th }}$ of the cell body diagonal $1 / 4 \cdot 427.0 \mathrm{pm} \cdot \sqrt{3}=184.9 \mathrm{pm}$.
Cu-O: Cu-Cu: half of the face diagonal: $1 / 2 \cdot 427.0 \mathrm{pm} \cdot \sqrt{ } 2=301.9 \mathrm{pm}$. 1 p each, no penalty for Cu and O switched.
$\mathrm{Cu}-\mathrm{Cu}$:
2.1.3. What is the density of pure copper(I) oxide?

Your work:
The volume of the unit cell is (427.0 pm$)^{3}$.
The mass of a unit cell is $\left(4 M_{C u}+2 M_{0}\right) / N_{A}$. The density is $6.106 \mathrm{~g} / \mathrm{cm}^{3}$.
2p

density:

2.2. What percentage of normal copper sites are empty in the crystal sample?

Your work:
From 1000 coppers 998 atoms are $\mathrm{Cu}(\mathrm{I})$ and 2 are $\mathrm{Cu}(\mathrm{II})$. To balance the charge of the anions, there has to be 2 vacant Cu sites.
The percentage of empty sites is: $2 / 1002 \approx 0.2 \%$
1 p
percentage:
What is x in the empirical formula $\mathrm{Cu}_{2-\mathrm{x}} \mathrm{O}$ of the crystal?
Your work:
0.2% of 2 coppers is missing. That is 0.004 .
1 p
x :
2.3. Write balanced chemical equations for reactions (1-3).

Reaction 1:

(1) $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{CuO}$ (copper(II)-hydroxides and carbonates accepted)

Reactior
(2) $\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cu}^{2+}+\mathrm{SO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Reactior
3p (non-ionic equations also accepted)
2.4. Determine the temperature ranges, if any, of thermodynamic stability of copper and its oxides between 500 and 1500 K in a $10^{5} \mathrm{~Pa}$ oxygen atmosphere.

Your work:
$\Delta_{\mathrm{f}} G(\mathrm{CuO})=-156000 \mathrm{~J} \mathrm{~mol}^{-1}+84 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} T$
$\Delta_{\mathrm{f}} G\left(\mathrm{Cu}_{2} \mathrm{O}\right)=-170000 \mathrm{~J} \mathrm{~mol}^{-1}+72 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} T$
Both Gibbs energies of formation are negative in the range $500-1500 \mathrm{~K}$, so the oxides are more stable than the elements. Cu is not stable.

Looking at the conversion process: $2 \mathrm{CuO}=\mathrm{Cu}_{2} \mathrm{O}+0.5 \mathrm{O}_{2}$
$\Delta_{\mathrm{r}} G=142000 \mathrm{~J} \mathrm{~mol}^{-1}-96 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} T$
The Gibbs energy of the reaction is negative above 1480 K .
CuO is stable below $1480 \mathrm{~K}, \mathrm{Cu}_{2} \mathrm{O}$ above 1480 K .
6 p (1 for each ΔG or equivalent calculation, 1 for each conclusion)

Temperature range between 500- 1500 K	The most stable form (Cu, Cu2O or $\mathrm{CuO})$

2.5. Write the half reaction equations for the electrode processes during the anodic production of $\mathrm{Cu}_{2} \mathrm{O}$ in NaOH solution with a platinum cathode and copper anode.

Cathode

C: $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
A: $2 \mathrm{Cu}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
Anode:
2p
2.6.1. Write the half reaction equation of the cathode process giving $\mathrm{Cu}_{2} \mathrm{O}$ in acidic medium.
\square
2.6.2. What is the maximum pH at which the concentration of copper(II) can be maintained at $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$?

Your work:
\qquadIf the pH is too high, $\mathrm{Cu}(\mathrm{OH})_{2}$ precipitates. $\mathrm{K}_{\mathrm{sp}} \geq 0.1\left[\mathrm{OH}^{-}\right]^{2} \quad \Rightarrow$ $\mathrm{pH} \leq 5.15$ 3 p (1p realizing that precipitation occurs, 1p equation, 1p result) maximu

2.6.3. What is the minimum pH at which the cathodic production of $\mathrm{Cu}_{2} \mathrm{O}$ in a $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Cu}^{2+}$ solution is still possible?

Your work:

$$
\begin{aligned}
& \text { The potential of the cathodic process }\left(2 \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}=\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{+}\right) \\
& \text {depends on the } \mathrm{pH} \text {. } \\
& \text { The standard potential of the cathodic process can be calculated from: } \\
& \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cu}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \Delta G^{\mathrm{o}_{1}}=-2 F(-0.36 \mathrm{~V}) \\
& \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \quad \Delta G^{\mathrm{o}_{2}}=-2 F(+0.337 \mathrm{~V}) \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \Delta G^{\mathrm{o}_{3}}=-R T \ln K_{\mathrm{w}} \\
& \text { For } 2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}): \\
& \Delta G^{0}=-\Delta G^{o_{1}}+2 \Delta G^{o_{2}}+2 \Delta G^{0}{ }_{3} \\
& E^{0}=-\Delta G^{\circ} / 2 F=0.36 \mathrm{~V}+2 \cdot 0.337 \mathrm{~V}-(R T / F) \cdot \ln K_{\mathrm{w}}=0.208 \mathrm{~V}
\end{aligned}
$$

The concentration dependence of the cathodic $\mathrm{Cu}_{2} \mathrm{O}$ production potential:
$E=0.208 \mathrm{~V}+0.059 / 2 \log \left(\left[\mathrm{Cu}^{2+}\right]^{2} /\left[\mathrm{H}^{+}\right]^{2}\right)$
This potential has to be higher than the potential of the reduction of Cu^{2+}.
$0.337+0.059 / 2 \log \left[\mathrm{Cu}^{2+}\right]=0.208+0.059 / 2 \log \left(\left[\mathrm{Cu}^{2+}\right]^{2} /\left[\mathrm{H}^{+}\right]^{2}\right)$
$\left[\mathrm{H}^{+}\right]^{2}=\left[\mathrm{Cu}^{2+}\right] / 23600$
$\mathrm{pH}=2.69$

6 p (3p for standard potential, 3p for calculation)
Many other routes possible - all correct ones accepted.
minimum pH :

Problem 3

9\% of the total

3.1.1.	3.1.2.	3.1 .3.	3.2 .1.	3.2 .2.	3.2.3.	3.3.1.	3.3.2.	3.3.3.	Sum
2	2	6	5	4	7	6	11	5	48

3.1.1. Write a balanced net ionic equation for the reaction when iodate reacts with excess iodide in acidic solution.
$\mathrm{IO}_{3}-+8 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
2 p (1p species, 1 p coefficients, 0.5 p penalty if spectator ions are included.)
3.1.2. Write a balanced net ionic equation for the reaction taking place during the titration with thiosulfate.
$\mathrm{I}_{3}{ }^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 3 \mathrm{I}^{-+} \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ or $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-+} \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
2 p (1p species, 1 p coefficients, 0.5 p penalty if spectator ions are included.)
3.1.3. Calculate the iodization level, in ppm , of this salt sample.

Your work:
$\left(0.00750 \mathrm{dm}^{3}\right.$ titrant $) \cdot\left(0.00235 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)=1.76 \cdot 10^{-5} \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$
$\left(1.76 \cdot 10^{-5} \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right) \cdot\left(1 \mathrm{~mol} \mathrm{IO}_{3}{ }^{-} / 6 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)=2.94 \cdot 10^{-6} \mathrm{~mol} \mathrm{IO}_{3}{ }^{-}$
$\left(2.94 \cdot 10^{-6} \mathrm{~mol} \mathrm{IO}_{3}{ }^{-}\right) \cdot(126.90 \mathrm{~g} / \mathrm{mol})=3.73 \cdot 10^{-4} \mathrm{~g}$ iodine
$\left\{\left(3.73 \cdot 10^{-4} \mathrm{~g}\right.\right.$ iodine $) /(10.00 \mathrm{~g}$ salt $\left.)\right\} \cdot 10^{6} \mathrm{ppm}=37.3 \mathrm{ppm}$ iodine
2 p for calculating mol thiosulfate
2 p for calculating mol iodate
2 p for converting to ppm
3.2.1. Select an appropriate data point from the experiments and use it to calculate the solubility product of $\mathrm{AgI}\left(K_{\text {spl }}\right)$.

Your work:

In the experiments, $|E|=-(R T / n F) \ln \left(\left[\mathrm{Ag}^{+}\right]_{\text {cell }} /\left[\mathrm{Ag}^{+}\right]_{\mathrm{ref}}\right)=-0.0591 \cdot \log \left[\mathrm{Ag}^{+}\right]$
There is a sharp endpoint at $n\left(\right.$ added $\left.\mathrm{Ag}^{+}\right)=n\left(\mathrm{I}^{-}\right.$initially present $)$in experiment A ([Cl- $=0$), so precipitation of $\operatorname{AgI}(\mathrm{s})$ must be essentially complete at any point in the titration curve. If one considers, for example, $5.0 \mu \mathrm{~mol}$ added Ag^{+}, then
$\left[\mathrm{I}^{-}\right]=\left[\mathrm{I}^{-}\right]_{0}-5.0 \cdot 10^{-6} \mathrm{~mol} / \mathrm{dm}^{3}=5.0 \cdot 10^{-6} \mathrm{~mol} / \mathrm{dm}^{3}$
$|E|=0.622 \mathrm{~V}=-0.0591 \cdot \log \left[\mathrm{Ag}^{+}\right] \Rightarrow\left[\mathrm{Ag}^{+}\right]=3.2 \cdot 10^{-11} \mathrm{~mol} / \mathrm{dm}^{3}$
$K_{\text {spl }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]=1.6 \cdot 10^{-16}$
2 p for relationship between E and $\left[\mathrm{Ag}^{+}\right]$(full credit if used even if not stated explicitly)

1 p for selecting a data point with $n\left(\mathrm{Ag}^{+}\right) \leq 10.0 \mu \mathrm{~mol}$
2p for calculation of $K_{\text {spI }}$
Full marks are awarded here and later for correct answers with numerical
$K_{\text {spl }}$:
3.2.2. Select an appropriate data point from the experiments and use it to calculate the solubility product of $\mathrm{AgCl}\left(K_{\mathrm{spcl}}\right)$.

Your work:

In the titration with $\left[\mathrm{Cl}^{-}\right]=0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ (experiment B), the fact that the potential stops changing at $n\left(\right.$ added $\left.\mathrm{Ag}^{+}\right) \geq 11.8 \mu \mathrm{~mol}$ must be due to the precipitation of $\mathrm{AgCl}(\mathrm{s})$ (the high concentration of chloride therefore effectively fixes the $\left[\mathrm{Ag}^{+}\right]$in the solution). So in this regime:
$|E|=0.517 \mathrm{~V}=-0.0591 \cdot \log \left[\mathrm{Ag}^{+}\right] \Rightarrow\left[\mathrm{Ag}^{+}\right]=1.6 \cdot 10^{-9} \mathrm{~mol} / \mathrm{dm}^{3}$
$K_{\text {spCl }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.6 \cdot 10^{-10}$
1 p for selecting a data point with $n\left(\mathrm{Ag}^{+}\right)>11.8 \mu \mathrm{~mol}$
3p for calculation of Kspcl
K_{spCl} :
3.2.3. Select an appropriate data point from the experiments and use it to calculate K f. You may need to use values of $K_{\text {spl }}$ or $K_{\text {spcl }}$ to do this calculation. If you were unable to carry out the calculations in 3.2.1. or 3.2.2., you may use the arbitrary values of $K_{\mathrm{spl}}=1.00 \cdot 10^{-15}$ and $K_{\mathrm{spcl}}=1.00 \cdot 10^{-9}$ without penalty.

Your work:

There are a number of good approaches to this problem.
One can use the point at which $\mathrm{AgCl}(\mathrm{s})$ first precipitates (estimated at $11.8 \mu \mathrm{~mol} \mathrm{Ag}^{+}$added) to calculate K f. At this point, $\left[\mathrm{Ag}^{+}\right]=1.6 \cdot 10^{-9} \mathrm{~mol} / \mathrm{dm}^{3}$, [$\mathrm{Cl}-]=0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ (see above).
Almost all of the originally present $1.0 \cdot 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$ iodide has been precipitated out as $9.9 \mu \mathrm{~mol} \mathrm{AgI}$, since $\left[\mathrm{I}^{-}\right]=K_{\text {spl }} /\left[\mathrm{Ag}^{+}\right]=1.0 \cdot 10^{-7} \mathrm{~mol} / \mathrm{dm}^{3}$

Total Ag in solution $=11.8 \mu \mathrm{~mol}-9.9 \mu \mathrm{~mol}=1.9 \mu \mathrm{~mol}$
$\left[\mathrm{AgCl}_{2}{ }^{-}\right]=1.9 \cdot 10^{-6} \mathrm{~mol} / \mathrm{dm}^{3}$ (since free $\left[\mathrm{Ag}^{+}\right]$is only $1.6 \cdot 10^{-9} \mathrm{~mol} / \mathrm{dm}^{3}$)
$\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{AgCl}_{2}^{-}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]^{2}}=\frac{1.9 \cdot 10^{-6}}{1.6 \cdot 10^{-9} \cdot 0.100^{2}}=1.2 \cdot 10^{5} \quad\left[1.9 \cdot 10^{4}\right.$ given const. $]$
Same approach works for $11 \mu \mathrm{~mol} \mathrm{Ag}^{+}$added.
2 p for selecting a data point between 10-12.0 $\mu \mathrm{mol}$
3p for reasonable method of calculating K_{f}
2 p for value of K_{f}

An alternative approach is to look at the equivalence point, where
$|E|=0.558 \mathrm{~V}=-0.0591 \cdot \log \left[\mathrm{Ag}^{+}\right] \Rightarrow\left[\mathrm{Ag}^{+}\right]=3.62 \cdot 10^{-10} \mathrm{~mol} / \mathrm{dm}^{3}$
Since $\operatorname{AgI}(s)$ is present, $\left[\mathrm{I}^{-}\right]=K_{\text {spl }} /\left[\mathrm{Ag}^{+}\right]=4.42 \cdot 10^{-7} \mathrm{~mol} / \mathrm{dm}^{3}$
The amount of dissolved iodine and silver is equivalent:
$\left[\mathrm{I}^{-}\right]=\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{AgCl}_{2}-\right] \Rightarrow\left[\mathrm{AgCl}_{2}{ }^{-}\right]=4.42 \cdot 10^{-7} \mathrm{~mol} / \mathrm{dm}^{3}$
$\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{AgCl}_{2}^{-}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]^{2}}=\frac{4.42 \cdot 10^{-7}}{3.62 \cdot 10^{-10} \cdot 0.100^{2}}=1.2 \cdot 10^{5}\left[7.6 \cdot 10^{5}\right.$ given const. $]$
Kf:
3.3.1. Write balanced net ionic equations for the reaction of cerium(IV) with $\mathrm{H}_{3} \mathrm{AsO}_{3}$ in acidic solution, as well as reactions of cerium(IV) with a species containing the element iodine and $\mathrm{H}_{3} \mathrm{AsO}_{3}$ with a species containing the element iodine, that could reasonably account for the catalysis of the net reaction by iodide.

Net reaction of cerium(IV) with $\mathrm{H}_{3} \mathrm{AsO}_{3}$ in acidic solution:
$2 \mathrm{Ce}^{4+}+\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ce}^{3+}+\mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{H}^{+}$
2p (1p for $\mathrm{H}_{3} \mathrm{AsO}_{3} / \mathrm{H}_{3} \mathrm{AsO}_{4}$ couple, 1p balanced)

Reaction of cerium(IV) with an iodine-containing species:

$$
2 \mathrm{Ce}^{4+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Ce}^{3+}+\mathrm{I}_{2}
$$

2 p (1p species, 1 p balanced). Full marks for I^{-}or I - as products

Reaction of $\mathrm{H}_{3} \mathrm{AsO}_{3}$ with an iodine-containing species:
$\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+}$
$2 p$ (1 p species, 1 p balanced). Full marks for I^{-}or $\mathrm{I} \cdot$ as products
Two iodine-containing reactions must add up to the net reaction, otherwise $-2 p$ for the iodine-containing reactions
3.3.2. Determine the integer values of m, n, and p and calculate the value of k (be sure to specify its units).

Your work:

The limiting reactant is $\mathrm{Ce}(\mathrm{IV})$ which is $<10 \%$ of the concentration of $\mathrm{H}_{3} \mathrm{AsO}_{3}$, so only the concentration of $\mathrm{Ce}(\mathrm{IV})$ changes appreciably over the course of the reaction. (I- is a catalyst and is not consumed.) So the order in Ce(IV) can be judged by the time course of the reaction. By eye, it appears to be first order.

This can be verified by calculating $-\ln \left(A / A_{0}\right) \cdot(1 / t)$, which should be a constant ($k_{\text {obs }}$) if the reaction is first-order:

$t, \mathrm{~s}$	$k_{\text {obs, }} \mathrm{s}^{-1}$, Run 1	$k_{\text {obs, }} \mathrm{s}^{-1}$, Run 2	$k_{\mathrm{obs},} \mathrm{s}^{-1}$, Run 3
20	0.0290	0.0328	0.0148
40	0.0286	0.0310	0.0147
60	0.0284	0.0305	0.0146
80	0.0284	0.0305	0.0146
100	0.0282	0.0302	0.0145
avg.	0.0285	0.0310	0.0146

So $n=1$.
Since k_{obs} is unchanged (within 10\%) from run 1 to run 2 despite decreasing $\left[\mathrm{H}_{3} \mathrm{AsO}_{3}\right]$ by a factor of two, $m=0$.
In contrast, decreasing $\left[\mathrm{I}^{-}\right]$by a factor of two from run 1 to run $\mathbf{3}$ results in a decrease in observed rate constant of a factor of two, so $p=1$.
$k=k_{\text {obs }} /\left[I^{-}\right]$, giving values of $1.99 \cdot 10^{4}, 2.17 \cdot 10^{4}$, and $2.04 \cdot 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for runs 1-3; average $k=2.07 \cdot 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.

4 p for documenting 1 st-order in Ce(IV), 2 p each for m and p,
2 p for value of $k, 1 \mathrm{p}$ for unit of k consistent with given rate law
$m=\quad n=\quad p=\quad k=$
3.3.3. Calculate the iodization level, in ppm, of the salt sample.

Your wo				
			t, s	$-\ln \left(A / A_{0}\right) \cdot(1 / t), \mathrm{s}^{-1}$
			20	0.0177
			40	0.0177
			60	0.0177
			80	0.0176
			100	0.0177
		So $k_{\text {obs }}=0.0177 \mathrm{~s}^{-1}=k\left[\mathrm{I}^{-}\right]=\left(2.07 \cdot 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)\left[\mathrm{I}^{-}\right]$		
		$\left[I^{-}\right]=8.55 \cdot 10^{-7} \mathrm{~mol} / \mathrm{dm}^{3}$		
		Since the salt solution was diluted by a factor of $\left(2.05 \mathrm{~cm}^{3}\right) /\left(0.050 \mathrm{~cm}^{3}\right)=$ 41 , the concentration in the original salt solution was $41 \cdot\left(8.55 \cdot 10^{-7} \mathrm{~mol} / \mathrm{dm}^{3}\right)=3.51 \cdot 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$.		
		$\left(3.51 \cdot 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(0.01000 \mathrm{dm}^{3}\right)=3.51 \cdot 10^{-7} \mathrm{~mol} \mathrm{I}$ in the salt sample $\left(3.51 \cdot 10^{-7} \mathrm{~mol}\right.$ iodine $)(126.90 \mathrm{~g} / \mathrm{mol})=4.45 \cdot 10^{-5} \mathrm{~g}$ iodine		
		2 p for calculating $k_{\mathrm{obs}}, 1 \mathrm{p}$ for $\left.\mathrm{II}^{-}\right]$from $k_{\mathrm{obs}}, 2 \mathrm{p}$ for converting to ppm		

Problem 4

8% of the total

4.1.1	4.1.2	$\mathbf{4 . 1 . 3}$	$\mathbf{4 . 2 . 1}$	$\mathbf{4 . 2 . 2}$	$\mathbf{4 . 2 . 3}$	$\mathbf{4 . 3 . 1}$	$\mathbf{4 . 3 . 2}$	Sum
5	3	2	1	2	6	2	4	25

4.1.1. Calculate the time in minutes the oxidation process has to continue in order to reach the accepted level of dioxane at 303.15 K if the initial concentration of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is $5.0 \cdot 10^{-6} \mathrm{~mol} / \mathrm{dm}^{3}$. Assume that the rate law obtained from the data above is valid under these conditions.

Your work:
Trial1 and $2 \Rightarrow$ the rate doubles when concentration of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is doubled. Order w.r.t. $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}=1$.

Trial3 and $4 \Rightarrow$ the rate does not change with concentration of dioxane.
Order w.r.t. dioxane $=0$.
Initial rate $=k\left[\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right] \quad$ Average $k=6.65 \cdot 10^{-3} \mathrm{~min}^{-1}$
Change in dioxane concentration: (40.00-0.35) $\mu \mathrm{g} \cdot \mathrm{dm}^{-3} / 88.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=$ $0.450 \mu \mathrm{~mol} \cdot \mathrm{dm}^{-3}$
$\left[\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right]_{0}=5.00 \mu \mathrm{~mol} \mathrm{dm}^{-3} ;\left[\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right]_{\mathrm{t}}=4.55 \mu \mathrm{~mol} \mathrm{dm}^{-3}$
$4.55=5.00 \exp \left(-6.65 \cdot 10^{-3} t\right)$
$t=14.2$ minutes
5 p (1p for each order, 1 p for $k, 2 \mathrm{p}$ for final answer)

Oxidation time:

4.1.2. Assuming $\mathrm{Ag}(\mathrm{III})$ to be in steady state, deduce the rate equation for the oxidation of dioxane.

Your work:

$$
\begin{aligned}
& k_{1}\left[\mathrm{~S}_{2} \mathrm{O}_{8}^{-2}\right]\left[\mathrm{Ag}^{+}\right]-k_{2}\left[\mathrm{SO}_{4}^{-2}\right]^{2}\left[\mathrm{Ag}^{+3}\right]-k_{3}\left[\mathrm{Ag}^{+3}\right][\mathrm{D}]=0 \\
& {\left[\mathrm{Ag}^{+3}\right]=\frac{k_{1}\left[\mathrm{~S}_{2} \mathrm{O}_{8}^{-2}\right]\left[\mathrm{Ag}^{+}\right]}{k_{2}\left[\mathrm{SO}_{4}^{-2}\right]+k_{3}[\mathrm{D}]}} \\
& \text { rate of oxidation }=\frac{k_{1} k_{3}\left[\mathrm{~S}_{2} \mathrm{O}_{8}^{-2}\right][\mathrm{D}]\left[\mathrm{Ag}^{+}\right]}{k_{2}\left[\mathrm{SO}_{4}^{-2}\right]^{2}+k_{3}[\mathrm{D}]} \\
& 3 \mathrm{p} \text { (1p for each step) }
\end{aligned}
$$

4.1.3. \square A, C $2 \mathrm{p},(1 \mathrm{p}$ penalty for every mistake)
4.2.1. Write an expression for k_{obs} in terms of $k_{\mathrm{H}}, k_{0}, k_{0 \mathrm{H}}$ and $\left[\mathrm{H}^{+}\right]$.

Your work:

$k_{\text {obs }}=k_{\mathrm{H}}\left[\mathrm{H}^{+}\right]+k_{0}+k_{\mathrm{OH}} \frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}$
$1 \mathrm{p},\left(0.5 \mathrm{p}\right.$ if $\left[\mathrm{OH}^{-}\right]$is included in the expression $)$
4.2.2. \square
\square 2 p , (1p penalty for every mistake)
4.2.3. Using the diagram and the data in the table, calculate k_{H}, k_{0} and $k_{o \mathrm{H}}$. Make sure to specify the units.

Your work:

$$
\begin{aligned}
& \text { At } \mathrm{pH}=5.30, k_{0} \text { is dominant } \\
& \log \left(k_{\mathrm{obs}} / \mathrm{min}^{-1}\right)=-4.000 \Rightarrow k_{\mathrm{obs}}=k_{0}=1.00 \cdot 10^{-4} \mathrm{~min}^{-1} \\
& \text { At } \mathrm{pH}=12.18,\left[\mathrm{OH}^{-}\right]=0.01514 \mathrm{~mol} \mathrm{dm}^{-3} \\
& \log \left(k_{\mathrm{obs}} / \mathrm{min}^{-1}\right)=-1.726 \Rightarrow k_{\mathrm{obs}}=1.88 \cdot 10^{-2} \mathrm{~min}^{-1} \\
& k_{\mathrm{obs}}=k_{0}+k_{\mathrm{oH}}\left[\mathrm{OH}^{-}\right] \quad k_{0} \text { can be neglected } \\
& k_{\mathrm{oH}}=k_{\mathrm{obs}} /\left[\mathrm{OH}^{-}\right]=1.24 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~min}^{-1} \\
& \text { At } \mathrm{pH}=1.30,\left[\mathrm{H}^{+}\right]=0.0501 \mathrm{~mol} \mathrm{dm}^{-3} \\
& \log \left(k_{\mathrm{obs}} / \mathrm{min}^{-1}\right)=-3.886 \Rightarrow k_{\mathrm{obs}}=1.30 \cdot 10^{-4} \mathrm{~min}^{-1} \\
& k_{\mathrm{obs}}=k_{\mathrm{H}}\left[\mathrm{H}^{+}\right]+k_{0} \quad k_{0} \text { cannot be neglected } \\
& k_{\mathrm{H}}=\frac{k_{\mathrm{obs}}-k_{0}}{\left[\mathrm{H}^{+}\right]}=\frac{3.0 \cdot 10^{-5} \mathrm{~min}^{-1}}{0.0501 \mathrm{~mol}^{+} \cdot \mathrm{dm}^{-3}} \\
& k_{\mathrm{H}}=6.0 \cdot 10^{-4} \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~min}^{-1} \\
& 6 \mathrm{p}\left(1 \mathrm{p} \text { for } k_{0}, 2 \mathrm{p} \text { for } k \mathrm{koH}, 3 \mathrm{p} \text { for } k_{\mathrm{H}}, 0.5 \mathrm{p} \text { penalty for wrong or no units }\right)
\end{aligned}
$$

k_{0} :
kон:
k_{H} :
4.3.1. \square b, c
2 p, (1p penalty for every mistake)
4.3.2. Assuming that only reactions I, II and III occur, calculate the value of the pH at the minimum of $k_{\text {obs }}$.

Your work:
$k_{\mathrm{obs}}=k_{\mathrm{H}}\left[\mathrm{H}^{+}\right]+k_{0}+k_{\mathrm{OH}} \frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}$
This is a minimum if
$\frac{d k_{\text {obs }}}{d\left[\mathrm{H}^{+}\right]}=k_{\mathrm{H}}-k_{\mathrm{OH}} \frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]^{2}}=0$
$\left[\mathrm{H}^{+}\right]_{\text {min }}=\sqrt{\frac{k_{\mathrm{OH}} K_{\mathrm{W}}}{k_{\mathrm{H}}}} \quad p \mathrm{H}_{\text {min }}=\frac{1}{2} p \mathrm{~K}_{\mathrm{W}}+\frac{1}{2} \log \frac{k_{\mathrm{H}}}{k_{\mathrm{OH}}}=2.40$
or see alternative solution without calculus
4 p (3p for expression of $\left[\mathrm{H}^{+}\right]$at minimum, 1 p for numerical result)
$k_{\text {obs }}$ is a minimum if $k_{\mathrm{H}}\left[\mathrm{H}^{+}\right]+k_{\mathrm{OH}} \frac{k_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}$is minimal.
The minimum happens when the two terms are equal. So at minimum:

$$
k_{\mathrm{H}}\left[\mathrm{H}^{+}\right]=k_{\mathrm{OH}} \frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}
$$

$$
\left[\mathrm{H}^{+}\right]_{\min }=\sqrt{\frac{k_{\mathrm{OH}} K_{\mathrm{w}}}{k_{\mathrm{H}}}} \quad p \mathrm{H}_{\min }=\frac{1}{2} p \mathrm{~K}_{\mathrm{W}}+\log \frac{k_{\mathrm{H}}}{k_{\mathrm{OH}}}=2.40
$$

pH at minimum:

Problem 5

8\% of the total

5.1.1.	5.1 .2.	5.1 .3.	5.1 .4.	5.1 .5.	5.1 .6.	5.2 .1.	5.2 .2.	5.3.	Sum
1	3	2	2	5	2	1	1	2	19

5.1.1. Find the mass of the gaseous mixture formed upon heating of \mathbf{A} with \mathbf{B} and SiO_{2}.

Your work:

$$
\begin{aligned}
& m=10.0+21.7+9.05-34.0=6.75 \mathrm{~g} \\
& 1 \mathrm{p}
\end{aligned}
$$

5.1.2. Determine the quantitative composition of this gas mixture.

Your work:

At $850^{\circ} \mathrm{C}$, the number of moles of gaseous products is:

$$
n_{1}=\frac{p V}{R T}=\frac{101325 \mathrm{~Pa} \cdot 0.0167 \mathrm{~m}^{3}}{8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \cdot(850 \mathrm{~K}+273 \mathrm{~K})}=0.181 \mathrm{~mol}
$$

while at $0^{\circ} \mathrm{C}$
$n_{2}=\frac{p V}{R T}=\frac{101325 \mathrm{~Pa} \cdot 0.00304 \mathrm{~m}^{3}}{8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \cdot 273 \mathrm{~K}}=0.136 \mathrm{~mol}$
The difference of 0.045 moles is probably water that has condensed. Hence, the mass of the gas at $0^{\circ} \mathrm{C}$ is $m=6.75-0.045 \cdot 18=5.94 \mathrm{~g}$, and the molar mass is $m / n_{2} \approx 44 \mathrm{~g} / \mathrm{mol}$. Taken into account that we dealt with minerals, and the temperature was high, we can conclude that the rest of the gas is CO_{2}.

The gas formed at $850^{\circ} \mathrm{C}$ contains 0.045 mol of $\mathrm{H}_{2} \mathrm{O}$ and 0.136 mol of CO_{2}.
$3 p$ (0.5 p for finding each compound, 1 p for the quantity of each compound)
5.1.3. Calculate the molar mass and determine the formula of mineral B. Hint: it is an ionic solid insoluble in water and containing no water of crystallization.

Your work:
Heating of mineral \mathbf{A} with SiO_{2} alone produces half of the gases evolved in the presence of \mathbf{B}. Thus, \mathbf{B} should form the rest $0.181 / 2=0.0905$ moles of gases and is a carbonate of some metal. If it forms pure CO_{2}, the molar mass of \mathbf{B} per carbonate group is $9.05 \mathrm{~g} / 0.0905 \mathrm{~mol}=100 \mathrm{~g} \mathrm{~mol}^{-1}$. The molar mass of CO_{3} group is $60 \mathrm{~g} \mathrm{~mol}^{-1}$, so the mass of metal per carbonate group is $40 \mathrm{~g} \mathrm{~mol}^{-1}$. This corresponds to $\mathrm{Ca}, \mathrm{B}-\mathrm{CaCO}_{3}$ 2p

B is:
5.1.4. Determine the formula of mineral \mathbf{C}.

Your work:

Similar to the previous question, the molar mass of \mathbf{C} per carbonate group is $17.8 \mathrm{~g} / 0.0905 \mathrm{~mol}=197 \mathrm{~g} \mathrm{~mol}^{-1}$. The mass of metal per carbonate group is $137 \mathrm{~g} \mathrm{~mol}^{-1}$.

This corresponds to $\mathrm{Ba}, \mathrm{C}-\mathrm{BaCO}_{3}$.
2p

C is:
5.1.5. Determine the formulae of Egyptian blue and Chinese blue.

Your work:

Taking into account the molar ratios of known compounds, we can write a general equation of formation of Egyptian blue:

$$
\mathrm{A}+2 \mathrm{CaCO}_{3}+8 \mathrm{SiO}_{2}=\text { pigment }+3 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

The composition of Egyptian blue can be written as $2 \mathrm{CaO} \cdot 8 \mathrm{SiO}_{2} \cdot n \mathrm{Me}_{x} \mathrm{O}_{y}$. Oxide $\mathrm{Me}_{x} \mathrm{O}_{y}$ forms from mineral \mathbf{A}. Let us find the molar mass of $n \mathrm{Me}_{x} \mathrm{O}_{y}$:

$$
\begin{aligned}
& M(\text { pigment })=M\left(2 \mathrm{CaO} \cdot 8 \mathrm{SiO}_{2}\right)+M\left(n \mathrm{Me}_{x} \mathrm{O}_{y}\right) \\
& M(\text { pigment })=2 M\left(\mathrm{CaCO}_{3}\right) \frac{m(\text { pigment })}{m\left(\mathrm{CaCO}_{3}\right)} \\
& M\left(n \mathrm{Me}_{x} \mathrm{O}_{y}\right)=2 M\left(\mathrm{CaCO}_{3}\right) \frac{34.0 \mathrm{~g}}{9.05 \mathrm{~g}}-M\left(2 \mathrm{CaO} \cdot 8 \mathrm{SiO}_{2}\right) \approx 159 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Trying different values (at least from 1 to 3) of n, x, and y, we ensure that the only possibility is $n=2, x=y=1, \mathrm{Me}$ is Cu . This is supported by a blue color of a pigment.

The formula of Egyptian blue is then $\mathrm{CaCuSi}_{4} \mathrm{O}_{10}$.
The formula of Chinese blue is $\mathrm{BaCuSi}_{4} \mathrm{O}_{10}$.
3p for proving presence of $\mathrm{Cu}(1.5 \mathrm{p}$ for correct molar mass of oxide without further advances)

2 p for formulas of the pigments
Any correct way of calculation is fully marked
Egyptian blue is: Chinese blue is:
5.1.6. Determine the formula of mineral \mathbf{A}.

Your work:
Upon heating A turns into $2 \mathrm{CuO}, 1 \mathrm{CO}_{2}$ and $1 \mathrm{H}_{2} \mathrm{O}$.
It means that \mathbf{A} is malachite $\mathrm{Cu}_{2} \mathrm{CO}_{3}(\mathrm{OH})_{2}$.
2p

A is:
5.2.1. Suggest the formula of the mineral used in place of \mathbf{C}.
BaSO_{4} (the most stable compound containing Ba and S , mineral barite)
1 p (BaS is soluble and reactive, can not be a mineral.)
5.2.2. Could the temperature of synthesis of Chinese blue be decreased if this mineral is used instead of \mathbf{C} ?

No. BaSO_{4} is more stable than BaCO_{3}.
\square Yes No

1 p
5.3. Write down a formula of a binary compound that forms under the conditions required for Chinese violet and is responsible for the change of the color.
$\mathrm{Cu}_{2} \mathrm{O}$ (mixing red with blue gives purple)
2p

Problem 6

7\% of the total

6.1.1.	6.1.2	6.2.1.	6.2.2.	6.2.3.	6.3.1	6.3.2.	Sum
24	4	3	6	2	2	8	49

6.1.1. Suggest structures for $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{F}$, and \mathbf{G}. None of the reactions except for the final transformation with L-selectride are stereoselective. Therefore, stereochemistry does not need to be indicated in your answers.

6.1.2. Give the formula for a possible reagent, \mathbf{X}, to convert compound \mathbf{D} to \mathbf{E}.

X
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCOH}$ or any other reasonable reagent. 4 p (3 p for formyl chloride)
Formic acid $=0$ p
6.2.1. What is the enantiomeric excess of the resolved compound prepared by the industrial route?

Your work:
If x is the percentage of the (-) enantiomer:
$x(-415)+(1-x)(415)=-400$
$x=815 / 830$
$e e=(815 / 830)-(15 / 830)=800 / 830=0.964$ or 96.4%
3 p (2p enantiomer composition, 1p ee calculation)
$e e$:
6.2.2. Assign the labelled stereocentres (α, β, γ) in $(-)-1$ as R or S.

α		β	γ
	S	R	S

6.2.3. Give the formula for a reagent that carries out the same reaction as L-selectride, the conversion of \mathbf{H} to $\mathbf{1}$. You need not worry about stereoselectivity.
$\mathrm{NaBH}_{4}, \mathrm{LiAlH}_{4}$, etc. 2p
6.3.1. Give the formula for compound \mathbf{Y} to carry out the first step of the route.
\square
6.3.2. Suggest structures for \mathbf{J} and \mathbf{K}.
(s)

Problem 7

8% of the total

7.1.	7.2.	7.3.1.	7.3.2.	7.4.	Sum
2	36	16	8	4	66

7.1. Determine the empirical formula of \mathbf{G} from the percentage masses given.

Your work:

$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$

2 p (1p for molecular formula)
7.2. Give the structures of A, B, C, D, E1, E2, F1, F2 and G.
E1 and E2

F1 and F2

and

4 p each
(1p if no de-carboxylation; 1 p for trans-diol; 0 p if no de-carboxylation and diol)

G

$4 p$
(0 p if does not fit formula)
7.3.1. Give the structures of \mathbf{H}, \mathbf{I}, and \mathbf{J}. There is no need to show the different diastereoisomers formed.

7.3.2 Give the structures of diastereoisomers K1, and K2.

K1

K2

4 pt (2pt if answer is $\mathbf{K} \mathbf{1}$)
(answer must fit formula and be sensible)

7.4. Give the structure of \mathbf{N}.

N

Problem 8

7\% of the total

8.1.	8.2.1.	8.2.2.	8.3.1.	8.3.2.	8.3.3.	Sum
4	10	1	4	1	2	22

8.1.1. Which of the following sentences is true?
$(\mathrm{x}) \square \mathrm{A}$ is an α isomer.
$\square \mathbf{A}$ is neither α nor β.
$\square \mathbf{A}$ is a β isomer.
$\square \mathbf{A}$ is a mixture of α and β isomers.
8.1.2. Which of the following sentences is true?
\square We can get product A only if we use $\alpha-\mathrm{D}$ glucose as starting material.
\square We can get product \mathbf{A} only if we use β-D glucose as starting material.
$(\mathrm{x}) \square$ We can get product \mathbf{A} either from α - or from β-D glucose as starting material.
8.1.3. Which one of these reagents can be utilized as \mathbf{X} for the selective hydrolysis of A?
(x) $\square 50 \%$ acetic acid
\square concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\square 6 \mathrm{M} \mathrm{HCl}$ in water
$\square 1 \mathrm{M} \mathrm{NaOH}$ in water
6 M HCl in acetic acid
8.1.4. Which is the stereochemically correct structure for compound \mathbf{B} ?

\square

(x)
Neither of these
8.2.1. Draw the structures of $\mathbf{C}, \mathbf{D}_{1}, \mathbf{D}_{2}, \mathbf{E}$ and \mathbf{F} including stereochemical information. Show \mathbf{F} as the more stable 6-membered ring containing isomer using the ring skeleton. Indicate with a wavy line if absolute chirality around a carbon is not known.
lan
8.2.2. The reaction sequence from glucose to \mathbf{F} does not seem to be useful. In some cases, however, this is the most economical way to produce \mathbf{F}. In which case?
(x) \square ${ }^{13} \mathrm{C}$ labelling at carbon 6 of $\mathbf{F}$${ }^{13} \mathrm{C}$ labelling at carbon 5 of $\mathbf{F}$${ }^{13} \mathrm{C}$ labelling at carbon 1 of $\mathbf{F}$${ }^{15} \mathrm{O}$ labelling at glycosidic OH of \mathbf{F}synthesis of an uncommon isomer of \mathbf{F}
8.3.1. Draw the structure of \mathbf{G} including stereochemistry.

Draw \mathbf{H} as the more stable 6-membered ring containing isomer using the ring skeleton. Indicate with a wavy line if absolute chirality around a carbon is not known.

8.3.3. Which of the following is true for \mathbf{H} ? (You can choose more than one option.)
(x) $\square \mathbf{H}$ is a reducing sugar (reacts with Fehling's reagent)\mathbf{H} is an aldaric acid (dicarboxylic derivative of an aldose)\mathbf{H} is an aldonic acid (C 1 is a carboxyl group)
(x) $\square \mathrm{H}$ is a uronic acid (C5 or C6 is a carboxyl group)\mathbf{H} is a ketose\mathbf{H} is a lactoneHis a D sugar\mathbf{H} is achiral\mathbf{H} is a meso compound
$2 \mathrm{p}, 1 \mathrm{p}$ with only one mistake (extra or missing letter), 0p with 2 or more mistakes

References

This appears only in the published version, it is not printed for the students.

Problem 1

Christe, Karl O., and William W. Wilson. 1982. "Perfluoroammonium and Alkali-Metal Salts of the heptafluoroxenon(VI) and octafluoroxenon(VI) Anions." Inorganic Chemistry 21 (12): 4113-17. doi:10.1021/ic00142a001.

Problem 2

Figure is from:
Gan, J., V. Venkatachalapathy, B.G. Svensson, and E.V. Monakhov. 2015. "Influence of Target Power on Properties of $\mathrm{Cu}_{x} \mathrm{O}$ Thin Films Prepared by Reactive Radio Frequency Magnetron Sputtering." Thin Solid Films 594 (November): 250-55.
doi:10.1016/j.tsf.2015.05.029.

Problem 4

Figures are adapted from:
Kamal, Oussama, Abderazzak Benlyamani, Farid Serdaoui, Mohammed Riri, Abdelmjid Cherif, and Miloudi Hlaïbi. 2012. "Stability Studies of Lysine Acetylsalicylate (Aspirin Derivative): Mechanisms of Hydrolysis." Open Journal of Physical Chemistry 2 (2): 81-87. doi:10.4236/ojpc.2012.22011.

Marrs, Peter S. 2004. "Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin." Journal of Chemical Education 81 (6): 870. doi:10.1021/ed081p870.

Problem 6

Küenburg, Bernhard, Laszlo Czollner, Johannes Fröhlich, and Ulrich Jordis. 1999. "Development of a Pilot Scale Process for the Anti-Alzheimer Drug (-)-Galanthamine Using Large-Scale Phenolic Oxidative Coupling and Crystallisation-Induced Chiral Conversion." Organic Process Research \& Development 3 (6): 425-31.
doi:10.1021/op990019q.
Trost, Barry M., Weiping Tang, and F. Dean Toste. 2005. "Divergent Enantioselective Synthesis of (-)-Galanthamine and (-)-Morphine." Journal of the American Chemical Society 127 (42): 14785-803. doi:10.1021/ja054449+.

Problem 8

Shafizadeh, F., and M. L. Wolfrom. 1955. "Synthesis1 of L-Iduronic Acid and an Improved Production of L -Glucose-6-C14." Journal of the American Chemical Society 77 (9): 256869. doi:10.1021/ja01614a072.

