Preparatory Problems Solutions to the tasks

"Bonding the World with Chemistry"
$49^{\text {th }}$ INTERNATIONAL CHEMISTRY OLYMPIAD Nakhon Pathom, THAILAND

Task lists

Theoretical part Page
Task 1. Dimerization of Acetic Acid 4
Task 2. Solubility of Calcite 5
Task 3. Expansion of Ideal Gas and Thermodynamics of Liquid Mixing 5
Task 4. Vibrational Frequency of a Diatomic Molecule 6
Task 5. Water-gas-shift Reaction 7
Task 6. Camphor in Benzene 8
Task 7. Gas and Liquid 8
Task 8. Decomposition of Nitrous Oxide 9
Task 9. Avogadro’s Number 10
Task 10. Buffer from Biological Acid: Lysine 10
Task 11. Amperometric Titration: Titration of Pb^{2+} with $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ 13
Task 12. Conductometric Titration 14
Task 13. Titration of Cu and Zn in Metal Alloy 14
Task 14. Spectrophotometric Determination of Iron 15
Task 15. Basic Electrochemistry 17
Task 16. Calculation of Concentration 18
Task 17. Small Molecule Activation by Frustrated Lewis Pairs 19
Task 18. Silver Iodide 20
Task 19. Perovskite Structure 21
Task 20. Quantum Numbers and Atomic Orbitals 22
Task 21. Radioactivity of Iodine and Nuclear Equations 22
Task 22. Structure and Chemistry of Sodium Chloride 23
Task 23. Natural Chelator from Shrimp Shell 24
Task 24. Compound Identification and Related Chemistry 27
Task 25. Isomerism of Octahedral Fe Complexes 28
Task 26. Stoichiometry and Structure Determination 29
Task 27. Atropine 30
Task 28. Synthesis of Building Blocks for Fluorescent Markers 31
Task 29. Synthesis towards Anatoxin-a 32
Task 30. Total Synthesis of Illudin C 33
Task 31. Total Synthesis of μ-Opioid Receptor (MOR) Agonists 33
Task 32. Pericyclic Reaction 34
Task 33. Stereoisomers without Stereocenter 36

Solution to the Tasks

Task 1. Dimerization of Acetic Acid

1.1) The reaction can be represented as $2 \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$.

If we begin with, say, $100.0 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ and 92.0% dimerizes, then 8.0 mol will be present at equilibrium. The 92.0 mol that react give rise to 46.0 mol dimers. The total number of moles present is therefore 54.0. Hence using the data at 298 K , the equilibrium constant, K_{p}, is given by

From equation $\Delta G^{o}=-R T \ln K_{p}$,
At $298 \mathrm{~K}, \quad \Delta G^{o}=-R T \ln K_{p}$

$$
=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K}) \ln (194)
$$

$$
=-13.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

At $318 \mathrm{~K}, \quad \Delta G^{o}=-R T \ln K_{p}$

$$
=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(318 \mathrm{~K}) \ln (37.3)
$$

$$
=-9.57 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Applying the equation $\Delta G^{o}=\Delta H^{o}-T \Delta S^{o}$:
The method for the calculation is to write the two equations

$$
\begin{aligned}
& \Delta G^{o}(298 \mathrm{~K})=-13.0 \mathrm{~kJ} \mathrm{~mol}^{-1}=\Delta H^{o}-(298) \Delta S^{o} \\
& \Delta G^{o}(318 \mathrm{~K})=-9.57 \mathrm{~kJ} \mathrm{~mol}^{-1}=\Delta H^{o}-\left(\text { (318) } \Delta S^{o}\right.
\end{aligned}
$$

and solve the equations simultaneously.
Then $\Delta H^{o}=-64.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S^{o}=-170 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
1.2) Applying the Le Chatelier's principle, an increase of pressure should
\checkmark favor the dimerization.
Onot favor the dimerization.
1.3) The extent of dimerization
\checkmark decreases with increasing the temperature.
Oincreases with increasing the temperature.

Task 2. Solubility of Calcite

According to $\Delta G^{o}{ }_{\text {sol }}=-R T \ln K_{s p}=\Delta H^{o}$ sol $-T \Delta S_{\text {sol }}^{o}$,
we have $\ln K_{s p}=-\Delta H^{o}{ }_{\text {sol }}(R T)+\Delta S^{o}{ }_{\text {sol }} / R$.
Assuming that $\Delta H^{o}{ }_{\text {sol }}$ and ΔS^{o} sol are temperature-independent,
$\ln \left(K_{s p p} / K_{s p 2}\right)=-\Delta H^{o}$ sol $/ R\left(1 / T_{1}-1 / T_{2}\right)$
$\ln (9.50 / 2.30)=-\Delta H^{o}$ sol $/ R(1 / 273-1 / 323)$
Solving this equation to get $\Delta H^{o}{ }_{\text {sol }}=-21 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Task 3. Expansion of Ideal Gas and Thermodynamics of Liquid Mixing

3.1) $\Delta U=0, \quad q=-w$
$w=-(1.00 \mathrm{~atm})\left(2.42-0.200 \mathrm{dm}^{3}\right)\left(101.325 \mathrm{~J} \mathrm{dm}^{-3} \mathrm{~atm}^{-1}\right)$
$=-225 \mathrm{~J}$
$q=225 \mathrm{~J}$
$\Delta S_{\text {surr }}=-225 \mathrm{~J} / 295.4 \mathrm{~K}=-0.762 \mathrm{~J} \mathrm{~K}^{-1}$
$\Delta S_{\text {sys }}=\left[(0.100 \mathrm{~mol})\left(8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(295.4 \mathrm{~K}) \ln \left(2.42 \mathrm{dm}^{3} / 0.200 \mathrm{dm}^{3}\right)\right] /(295.4 \mathrm{~K})=2.07 \mathrm{~J} \mathrm{~K}^{-1}$
$\Delta S_{\text {univ }}=2.07+(-0.762)=1.31 \mathrm{~J} \mathrm{~K}^{-1}$
3.2) $\Delta H^{m i x}=\Delta V^{m i x}=0$

The other functions are given by these equations:
$\Delta G^{m i x}=R T \sum_{i} x_{i} \ln x_{i}$ and $\Delta S^{m i x}=-R \sum_{i} x_{i} \ln x_{i}$.
The mole fraction of \mathbf{A} is $3.00 /(3.00+5.00)=0.375$.
The mole fraction of \mathbf{B} is $1.000-0.375=0.625$.

$$
\begin{aligned}
& \Delta G^{\text {mix }}=\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298.0 \mathrm{~K})\{0.375 \ln (0.375)+0.625 \ln (0.625)\}=-1639 \mathrm{~J} \mathrm{~mol}^{-1} \\
& \Delta S^{\text {mix }}=-\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)\{0.375 \ln (0.375)+0.625 \ln (0.625)\}=5.50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Task 4. Vibrational Frequency of a Diatomic Molecule

4.1) To find the reduced mass of $\mathrm{CX}, \mu_{\mathrm{CX}}$:
$E_{0}=\left(0+\frac{1}{2}\right) h v=\frac{1}{2} h v$
$E_{1}=\left(1+\frac{1}{2}\right) h v=\frac{3}{2} h v$
$\Delta E=E_{1}-E_{2}=\left(\frac{3}{2}-\frac{1}{2}\right) h v=h v$
$\Delta E=h c\left(\frac{1}{\lambda}\right)=h \frac{1}{2 \pi} \sqrt{\frac{k}{\mu}} ; v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}$
$c\left(\frac{1}{\lambda}\right)=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}$
$k=4 \pi^{2} c^{2} \mu\left(\frac{1}{\lambda}\right)^{2}$
$\mu=\frac{k}{4 \pi^{2} c^{2}\left(\frac{1}{\lambda}\right)^{2}}$
$\mu=\frac{1.903 \times 10^{3}}{4(3.14)^{2}\left(2.9979 \times 10^{10} \mathrm{~cm} \cdot \mathrm{~s}^{-1}\right)^{2}\left(2170.0 \mathrm{~cm}^{-1}\right)^{2}}$
$\mu=1.140 \times 10^{-26} \mathrm{~kg}=6.866 \mathrm{amu}$
$\mu=6.866 \mathrm{amu}$
4.2) To find mass of the atom X, m_{x} :
$\mu_{C X}=\frac{m_{C} m_{X}}{m_{C}+m_{X}}$
$\mu_{C X}\left(m_{C}+m_{X}\right)=m_{C} m_{X}$
$\mu_{C X} m_{C}+\mu_{C X} m_{X}=m_{C} m_{X}$
$m_{C} m_{X}-\mu_{C X} m_{X}=\mu_{C X} m_{C}$
$m_{X}=\frac{\mu_{C X} m_{C}}{m_{C}-\mu_{C X}}$
$m_{x}=\frac{6.866 \times 12.011}{12.011-6.866}=\frac{82.47}{5.145}=16.03$
Thus, atom X should be oxygen.

Task 5. Water-gas-shift Reaction

5.1) The mole fraction of H_{2} in the reactor, $X_{\mathrm{H}_{2}}=\frac{n_{\mathrm{H}_{2}}}{n_{\mathrm{H}_{2}}+n_{\mathrm{CO}_{2}}+n_{\mathrm{H}_{2} \mathrm{O}}+n_{\mathrm{CO}}}=\frac{0.475}{1.0}=0.475$.

Thus, $P_{H_{2}}=X_{H_{2}} P_{\text {total }}=(0.475)(1.00 \mathrm{~atm})=0.475 \mathrm{~atm}$.
And likewise, $P_{\mathrm{CO}_{2}}=0.475 \mathrm{~atm}$ and $P_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{CO}}=0.025 \mathrm{~atm}$
$K=\frac{P_{\mathrm{H}_{2}} P_{\mathrm{CO}_{2}}}{P_{\mathrm{H}_{2} \mathrm{O}} P_{\mathrm{CO}}}=\frac{(0.475)(0.475)}{(0.025)(0.025)}=3.6 \times 10^{2}$
Therefore, $\Delta G^{o}=-R T \ln K=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(273 \mathrm{~K}) \ln \left(3.6 \times 10^{2}\right)=-13.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
5.2) The kinetics data given reflects the forward rate of the WGS reaction. The only rate law that is consistent with the given data is $r_{f}=k_{f} P_{C O} P_{H_{2} O}$, and $k_{f}=4.4 \times 10^{-3} \mathrm{~atm}^{-1} \mathrm{~s}^{-1}$.

Thus, $\mathrm{X}=\left(4.4 \times 10^{-3} \mathrm{~atm}^{-1} \mathrm{~s}^{-1}\right)(0.28 \mathrm{~atm})(0.72 \mathrm{~atm})=8.9 \times 10^{-4} \mathrm{~atm} \mathrm{~s}^{-1}$.
5.3) $k_{b}=k_{f} / \mathrm{K}=\left(4.4 \times 10^{-3} \mathrm{~atm}^{-1} \mathrm{~s}^{-1}\right) /\left(3.6 \times 10^{2}\right)=1.2 \times 10^{-5} \mathrm{~atm}^{-1} \mathrm{~s}^{-1}$.

So during the normal course of the reaction,
$r=r_{f}-r_{b}=k_{f} P_{C O} P_{\mathrm{H}_{2} \mathrm{O}}-k_{b} P_{\mathrm{CO}_{2}} P_{\mathrm{H}_{2}}=\left(4.4 \times 10^{-3} \mathrm{~atm}^{-1} \mathrm{~s}^{-1}\right)(0.14 \mathrm{~atm})(0.14 \mathrm{~atm})-\left(1.2 \times 10^{-5} \mathrm{~atm}^{-1} \mathrm{~s}^{-1}\right)$ $(0.36 \mathrm{~atm})(0.36 \mathrm{~atm})=8.44 \times 10^{-5} \mathrm{~atm} \mathrm{~s}^{-1}$.
5.4) $\Delta G=\Delta G^{o}+R T \ln Q=\left(-13.4 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273 \mathrm{~K}) \ln \left(\frac{(0.36)(0.36)}{(0.14)(0.14)}\right)=-9.1$ $\mathrm{kJ} \mathrm{mol}^{-1}$
5.5) The reaction $\mathrm{CO}_{2} \mathrm{H}(\mathrm{ads}) \rightarrow \mathrm{CO}_{2}($ ads $)+\mathrm{H}(\mathrm{ads})$ is first-order, whose rate can be expressed as rate $=\mathrm{k}\left[\mathrm{CO}_{2} \mathrm{H}\right]=\mathrm{k} \theta \mathrm{S}_{0}=\mathrm{k}^{\prime} \theta$, where S_{0} denotes the maximum number of adsorbed intermediates for this surface.
Thus, $\theta=$ rate $/ \mathrm{k}^{\prime}=\left(1.0 \times 10^{11}\right.$ molecules $\left.\mathrm{s}^{-1} \mathrm{~cm}^{-2}\right) /\left(2.0 \times 10^{12}\right.$ molecules $\left.\mathrm{s}^{-1} \mathrm{~cm}^{-2}\right)=0.050$.

Task 6. Camphor in Benzene

$$
\begin{aligned}
& X_{\text {ben }}=\mathrm{n}_{\text {ben }} /\left(\mathrm{n}_{\text {ben }}+\mathrm{n}_{\text {cam }}\right) \\
& \mathrm{n}_{\text {ben }}=\left(100 \mathrm{~cm}^{3}\right)\left(0.877 \mathrm{~g} \mathrm{~cm}^{-3}\right)(1 \mathrm{~mol} / 78.1 \mathrm{~g})=1.12 \mathrm{~mol} \\
& \mathrm{n}_{\text {cam }}=(24.6 \mathrm{~g})(1 \mathrm{~mol} / 152.2 \mathrm{~g})=0.162 \mathrm{~mol} \\
& X_{\text {ben }}=(1.12 \mathrm{~mol}) /(1.12 \mathrm{~mol}+0.162 \mathrm{~mol})=0.874 \\
& P_{\text {ben }}=\left(X_{\text {ben }}\right)\left(P_{\text {ben }}^{\mathrm{o}}\right)=(0.874)(100 \text { torr })=87.4 \text { torr }
\end{aligned}
$$

mass $_{\text {ben }}=\left(100 \mathrm{~cm}^{3}\right)\left(0.877 \mathrm{~g} \mathrm{~cm}^{-3}\right)(1 \mathrm{~kg} / 1000 \mathrm{~g})=0.0877 \mathrm{~kg}$
molality of camphor in solution $=0.162 \mathrm{~mol}$ camphor/ 0.0877 kg benzene $=1.85 \mathrm{~mol} \mathrm{~kg}^{-1}$ $\Delta T=K_{f} \mathrm{~m}=\left(5.12{ }^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}{ }^{-1}\right)\left(1.85 \mathrm{~mol} \mathrm{~kg}^{-1}\right)=9.46^{\circ} \mathrm{C}$
Since pure benzene freezes at $5.50^{\circ} \mathrm{C}$, the solution will freeze at $-3.96^{\circ} \mathrm{C}$.

Task 7. Gas and Liquid

7.1) According to the graph, the volume becomes zero at $T=-100^{\circ} \mathrm{C}$. This means that the absolute temperature should be calculated as $T(\mathrm{~K})={ }^{\circ} \mathrm{C}+100\left(\operatorname{not} T(\mathrm{~K})={ }^{\circ} \mathrm{C}+273.15\right)$.

If $V_{l}=15 \mathrm{~cm}^{3}, T_{l}=-50^{\circ} \mathrm{C}+100=50 \mathrm{~K}$, and $T_{2}=100^{\circ} \mathrm{C}+100=200 \mathrm{~K}$, then we have $\left(15 \mathrm{~cm}^{3} / 50 \mathrm{~K}\right)=\left(V_{2} / 200 \mathrm{~K}\right)$.
Therefore, $V_{2}=\left(15 \mathrm{~cm}^{3}\right)(200 \mathrm{~K}) /(50 \mathrm{~K})=60 \mathrm{~cm}^{3}$.
7.2) From Dalton's law, the total vapor pressure is the sum of the individual vapor pressures:

$$
\begin{equation*}
P_{\text {total }}=P_{B}+P_{C} \tag{1}
\end{equation*}
$$

Using the Raoult's law, the total pressure may be obtained by substituting each P term with $P_{i}{ }^{\circ} \times X_{i}$, where $P_{i}{ }^{\circ}$ is vapor pressure above pure liquid i and X_{i} is mole fraction of liquid i :

$$
\begin{equation*}
P_{\text {total }}=\left(P_{B}^{O} \times X_{B}\right)+\left(P_{C}^{O} \times X_{C}\right) \tag{2}
\end{equation*}
$$

We know from the question that there are 7 mol of liquid. We obtain the respective mole fractions X : the mole fraction of \mathbf{B} is $3 / 7$ and the mole fraction of \mathbf{C} is $4 / 7$.
Substituting values of X_{i} and $P_{i}{ }^{\circ}$ into equation (2) yields the total pressure $P_{\text {total }}$ as follows

$$
\begin{aligned}
P_{\text {total }} & =(100.1 \mathrm{kPa} \times 3 / 7)+(60.4 \mathrm{kPa} \times 4 / 7) \\
& =(42.9 \mathrm{kPa})+(34.5 \mathrm{kPa}) \\
\text { So } P_{\text {total }} & =77.4 \mathrm{kPa}
\end{aligned}
$$

7.3) From the definition of mole fraction X, we say

$$
X_{\text {vapor } B}=\frac{\text { moles of B in the vapor }}{\text { total number of moles in the vapor phase }}
$$

The number of moles n_{i} are directly proportional to the partial pressure P_{i} if we assume that each vapor behaves as an ideal gas (we assume here that T and V are constant). Accordingly, we say

$$
X_{\text {vapor } B}=\frac{\text { pressure of } \mathrm{B}}{\text { total pressure }}
$$

Substituting numbers from question 7.2 :

$$
X_{\text {vapor } B}=\frac{42.9 \mathrm{kPa}}{77.4 \mathrm{kPa}}=0.554
$$

The mole fraction of \mathbf{B} in the vapor is 0.554 , so it contains $55.4 \% \mathbf{B}$. The remainder of the vapor must be \mathbf{C}, so the vapor also contains (100-55.4) $\%=44.6 \%$ of \mathbf{C}.
Note that the liquid phase comprises 43% B and 57% C, but the vapor contains proportionately more of the volatile \mathbf{B}. We should expect the vapor to be richer in the more volatile component.

Task 8. Decomposition of Nitrous Oxide

8.1) Because the reaction is second order, therefore

$$
\begin{aligned}
& \frac{1}{\left[\mathrm{~N}_{2} \mathrm{O}\right]_{\mathrm{t}}}-\frac{1}{0.108 \mathrm{~mol} \mathrm{dm}^{-3}}=\left(1.10 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)(1250 \mathrm{~s}) \\
& {\left[\mathrm{N}_{2} \mathrm{O}\right]_{\mathrm{t}}=0.0940 \mathrm{~mol} \mathrm{dm}}
\end{aligned}
$$

8.2) Using Arrhenius equation,

$$
\begin{gathered}
\ln \frac{k_{2}}{1.10 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}=-\frac{234 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\left[\frac{1}{873 \mathrm{~K}}-\frac{1}{838 \mathrm{~K}}\right] \\
k_{2}=4.23 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
\end{gathered}
$$

Task 9. Avogadro's Number

9.1) Let $\mathrm{v}=\alpha^{3}$, the volume of the unit cell

The number of unit cell in volume V of the silicon sphere $=(\mathrm{V} / \mathrm{v})$
If n is the number of silicon atoms in the unit cell, the number of silicon atoms in silicon sphere $=n(V / v)$

The number of moles of Si in the sphere $=(\mathrm{W} / \mathrm{A})$
The number of silicon atoms in sphere $=$ moles x_{A}.

$$
\begin{array}{ll}
\text { i.e. } & (\mathrm{W} / \mathrm{A}) \cdot \mathrm{N}_{\mathrm{A}}=\mathrm{n}(\mathrm{~V} / \mathrm{v}) \\
& \mathrm{N}_{\mathrm{A}}=\mathrm{n}(\mathrm{~V} / \mathrm{v}) .(\mathrm{A} / \mathrm{W})
\end{array}
$$

9.2) For a face-centered unit cell, the number of atoms at the 8 corners of cell $=8$; the number at the 6 faces $=6$. Each corner has $(1 / 8)$ of atom in unit cell and each face has $(1 / 2)$ of atom. Thus total number of Si atoms in unit cell $=8 \mathrm{x}(1 / 8)+6 \mathrm{x}(1 / 2)+4=1+3+4=8$.

$$
\mathrm{n}=8
$$

9.3) The volume v of the unit cell must be in unit of cm^{3}.

$$
\begin{aligned}
& 1 \mathrm{pm}=10^{-12} \mathrm{~m}=10^{-10} \mathrm{~cm} \\
& \mathrm{~N}_{\mathrm{A}}=6.022141 \times 10^{23}
\end{aligned}
$$

Task 10. Buffer from Biological Acid: Lysine

Acid Dissociation Constants

10.1)

No, the correct form is shown:

10.2)

10.3) Given that $\quad H_{3} L^{2+}$: the most acidic form
$\mathrm{H}_{2} \mathrm{~L}^{+}$: the first intermediate form
HL : the second intermediate form
L : the most basic form
$\mathrm{C}_{\mathrm{H}_{3} \mathrm{~L}^{2+}}=\left[\mathrm{H}_{3} \mathrm{~L}^{2+}\right]+\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]+[\mathrm{HL}]+\left[\mathrm{L}^{-}\right]=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
total mol of $\mathrm{H}_{3} \mathrm{~L}^{2+}=\left(0.100 \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(0.1 \mathrm{dm}^{3}\right)=0.01 \mathrm{~mol}$
total mol of $\mathrm{H}_{3} \mathrm{~L}^{2+}=\left(\mathrm{mol} \mathrm{H}_{3} \mathrm{~L}^{2+}\right)+\left(\mathrm{mol} \mathrm{H}_{2} \mathrm{~L}^{+}\right)+(\mathrm{mol} \mathrm{HL})+\left(\mathrm{mol} \mathrm{L}^{-}\right)=0.01 \mathrm{~mol}$
At $\mathrm{pH}=9.5,\left[\mathrm{H}^{+}\right]=10^{-9.5} \mathrm{~mol} \mathrm{dm}^{-3}$
At $\mathrm{pH}=9.5$, the equilibrium moles of all forms can be calculated as follow;
$\mathrm{mol} \mathrm{H}_{3} \mathrm{~L}^{2+}=$ total $\operatorname{mol}_{\mathrm{H}_{3} \mathrm{~L}^{2+}}\left(\frac{\left[H^{+}\right]^{3}}{\left[H^{+}\right]^{3}+K_{1}\left[H^{+}\right]^{2}+K_{1} K_{2}\left[H^{+}\right]+K_{1} K_{2} K_{3}}\right)=1.14 \times 10^{-8} \mathrm{~mol}($ negligible $)$
mol $\mathrm{H}_{2} \mathrm{~L}^{+}=$total $\operatorname{mol}_{\mathrm{H}_{3} \mathrm{~L}^{2+}}\left(\frac{K_{1}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{3}+K_{1}\left[H^{+}\right]^{2}+K_{1} K_{2}\left[H^{+}\right]+K_{1} K_{2} K_{3}}\right)=2.497 \times 10^{-3} \mathrm{~mol}$
mol HL $=$ total $\operatorname{mol}_{\mathrm{H}_{3} \mathrm{~L}^{2+}}\left(\frac{K_{1} K_{2}\left[H^{+}\right]}{\left[H^{+}\right]^{3}+K_{1}\left[H^{+}\right]^{2}+K_{1} K_{2}\left[H^{+}\right]+K_{1} K_{2} K_{3}}\right)=6.88 \times 10^{-3} \mathrm{~mol}$
$\operatorname{mol} \mathrm{L}^{-}=$total $\operatorname{mol}_{\mathrm{H}_{3} \mathrm{~L}^{2+}}\left(\frac{K_{1} K_{2} K_{3}}{\left[\mathrm{H}^{+}\right]^{3}+K_{1}\left[H^{+}\right]^{2}+K_{1} K_{2}\left[H^{+}\right]+K_{1} K_{2} K_{3}}\right)=6.27 \times 10^{-4} \mathrm{~mol}$

Titration reaction to convert $\mathrm{H}_{3} \mathrm{~L}^{2+}$ to the desired forms;
$\mathrm{H}_{3} \mathrm{~L}^{2+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~L}^{+}$
$\mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HL}$
$\mathrm{HL}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{L}^{-}$
mol of KOH required $=\left(2.497 \times 10^{-3}\right)+2\left(6.88 \times 10^{-3}\right)+3\left(6.27 \times 10^{-4}\right)$

$$
=1.814 \times 10^{-2} \mathrm{~mol}
$$

cm^{3} of KOH required $==\left(\frac{1000 \mathrm{~cm} 3}{0.5 \mathrm{~mol}}\right)\left(1.813 \times 10^{-2} \mathrm{~mol}\right)=36.28 \mathrm{~cm}^{3}$
10.4) In this case, $K_{a 1}$ is carboxylic acid $K_{a}, K_{a 2}$ is ammonium K_{a}, and $K_{a 3}$ is substituent K_{a}. HL is the second intermediate form

$$
\left[H^{+}\right]=\sqrt{\frac{K_{a 2} K_{a 3}[H L]+K_{a 2} K_{w}}{K_{a 2}+[H L]}}
$$

Since $K_{a 2}$ and $K_{a 3}$ are small;
$[\mathrm{HL}]=\frac{(5.00 \mathrm{~g})\left(\frac{1 \mathrm{~mol}}{146.19 \mathrm{~g}}\right)}{0.100 \mathrm{dm}^{3}}=0.342 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\left[10^{-9.06} 10^{-10.54}(0.342)\right]+\left[10^{-9.06} 10^{-14}\right)}{10^{-9.06}+0.342}}=1.59 \times 10^{-10} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=9.80$

The alternative calculation is $\mathrm{pH}=\left(\mathrm{pK}_{\mathrm{a} 2}+\mathrm{pK}_{\mathrm{a} 3}\right) / 2=(9.06+10.54) / 2=9.80$.
10.5)
$H L \rightleftharpoons L^{-}+H^{+}$

$$
K_{a 3}=10^{-10.54}
$$

$\mathrm{HL}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{OH}^{-}$

$$
K_{b 2}=\frac{K_{W}}{K_{a 2}}=\frac{10^{-14}}{10^{-9.06}}=1.15 \times 10^{-5}
$$

From question $10.4 ;\left[\mathrm{H}^{+}\right]=1.59 \times 10^{-10} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{OH}^{-}\right]=\frac{K_{W}}{\left[H^{+}\right]}=\frac{10^{-14}}{1.59 \times 10^{-10}}=6.29 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
At equilibrium;
$[\mathrm{HL}]=C_{H L}\left(\frac{K_{1} K_{2}\left[H^{+}\right]}{\left[H^{+}\right]^{3}+K_{1}\left[H^{+}\right]^{2}+K_{1} K_{2}\left[H^{+}\right]+K_{1} K_{2} K_{3}}\right)$
Where; $\mathrm{C}_{\mathrm{HL}}=0.342 \mathrm{M}$
$[\mathrm{HL}]=0.250 \mathrm{M}$
$K_{a 3}=\frac{\left[L^{-}\right]\left[H^{+}\right]}{[H L]}$
$\rightarrow\left[\mathrm{L}^{-}\right]=\frac{K_{a 3}[\mathrm{HL}]}{\left[H^{+}\right]}=\frac{10^{-10.54}(0.250)}{1.59 \times 10^{-10}}=0.0453 \mathrm{~mol} \mathrm{dm}^{-3}$
$K_{b 2}=\frac{\left[\mathrm{H}_{2} L^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{HL}]}$
$\rightarrow\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]=\frac{K_{b 2}[\mathrm{HL}]}{\left[\mathrm{OH}^{-}\right]}=\frac{1.15 \times 10^{-5}(0.25)}{6.29 \times 10^{-5}}=0.0457 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{~L}^{2+}+\mathrm{OH}^{-} \quad K_{b 3}=\frac{K_{W}}{K_{a 1}}=\frac{10^{-14}}{10^{-2.16}}=1.45 \times 10^{-12}$
$K_{b 3}=\frac{\left[\mathrm{H}_{3} \mathrm{~L}^{2+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]}$
$\rightarrow\left[\mathrm{H}_{3} \mathrm{~L}^{2+}\right]=\frac{K_{b 3}\left[\mathrm{H}_{2} L^{+}\right]}{\left[O H^{-}\right]}=\frac{1.45 \times 10^{-12}(0.0457)}{6.29 \times 10^{-5}}=1.05 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$

Task 11. Amperometric Titration: Titration of Pb^{2+} with $\mathrm{Cr}_{2} \mathrm{O}_{7^{-2}}$

11.1) By extrapolating the two straight lines, the titration end-point is located.

11.2) $\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{PbCr}_{2} \mathrm{O}_{7}(\mathrm{~s})$
11.3) $\mathrm{mol} \mathrm{Pb}=\mathrm{mol}$ dichromate
$0.0020 \mathrm{~mol} \mathrm{dm}^{-3} \times 8.0 \mathrm{~cm}^{3}=20.0 \mathrm{~cm}^{3} \times \mathrm{C}_{\text {lead }}$
Therefore, $[$ lead $]=0.0020 \times 8.0 / 20.0=8.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$

Task 12. Conductometric Titration

12.1) The conductivity value before turning point comes from the mobility of H^{+}and Cl^{-}from HCl . After NaOH was added to the titration vessel, the H^{+}reacted with OH^{-}and the solution conductivity due to H^{+}decreases. After the turning point, NaOH becomes excess in solution. The conductivity value increases with amount of added NaOH . The ion mobility of H^{+}is higher than that of OH^{-}, hence the slope of titration curve before and after turning point is different.
12.2) From titration curve, the turning point is the end point, and is at 108 seconds.

Flow rate of $\mathrm{NaOH}=3$ drops $/ \mathrm{sec}$.
Therefore, the volume of NaOH is $108 \times 3=324$ drops $=324 \times 0.029 \mathrm{~cm}^{3}=9.39 \mathrm{~cm}^{3}$
The concentration of $\mathrm{HCl}=9.39 \times 0.100 / 25=0.037 \mathrm{~mol} \mathrm{dm}^{-3}$.

Task 13. Titration of Cu and Zn in Metal Alloy

13.1) $\mathrm{Cu}_{(\mathrm{s})}+4 \mathrm{HNO}_{3(\text { aq })} \rightleftharpoons \mathrm{Cu}^{2+}+2 \mathrm{NO}_{3}^{-}{ }^{-}(\mathrm{aq})+2 \mathrm{NO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ $\mathrm{Zn}+2 \mathrm{HCl} \rightleftharpoons \mathrm{Zn}^{2+}+\mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{Cl}^{-}$
13.2) Total metal by EDTA titration $=$ mol EDTA used $=33.4 \times 0.1 / 1000=3.34 \times 10^{-3} \mathrm{~mol}$ Mol Cu by redox titration
$2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightleftharpoons \mathrm{CuI}(\mathrm{s})+\mathrm{I}_{2}$
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightleftharpoons 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
$\mathrm{mol} \mathrm{Cu}=\mathrm{mol}$ thiosulfate used $=29.35 \times 0.1 / 1000=2.935 \times 10^{-3} \mathrm{~mol}$
grams $\mathrm{Cu}=2.935 \times 10^{-3} \mathrm{~mol} \times 63.5=0.1864$ grams in 25.00 mL aliquot
Therefore, a $250 \mathrm{~cm}^{3}$ sample solution will contain $=0.1864 \times 250 / 25=1.864$ gram
Thus $\% \mathrm{w} / \mathrm{w} \mathrm{Cu}=1.864 / 2.300 \times 100=81.0 \%$
$\mathrm{mol} \mathrm{Zn}=$ total metal $-\mathrm{Cu}=3.34 \times 10^{-3}-2.935 \times 10^{-3}=4.05 \times 10^{-4} \mathrm{~mol}$ grams $\mathrm{Zn}=4.05 \times 10^{-4} \mathrm{~mol} \mathrm{x} 65.4=2.649 \times 10^{-2}$ grams in 25.00 aliquot

Therefore, $250 \mathrm{~cm}^{3}$ sample solution will contain $=2.649 \times 10^{-2} \times 250 / 25=0.2649$ gram
Thus $\% w /$ w $\mathrm{Zn}=0.2649 / 2.300 \times 100=11.5 \%$

Task 14. Spectrophotometric Determination of Iron

14.1)
a) At $\mathrm{C}_{\mathrm{L}}=2.20 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{ML}_{3}\right]=6.25 \times 10^{-5}$
$\mathrm{A}=\varepsilon \mathrm{bC}$, therefore $\varepsilon=\mathrm{A} / \mathrm{bC}=0.750 / 6.25 \times 10^{-5}=12,000 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$
b) $\quad \mathrm{M}+3 \mathrm{~L} \rightleftharpoons \mathrm{ML}_{3}$
$\mathrm{K}_{\mathrm{f}}=\left[\mathrm{ML}_{3}\right] /[\mathrm{M}][\mathrm{L}]^{3}$
at $\mathrm{C}_{\mathrm{L}}=9.25 \times 10^{-5} \mathrm{M},\left[\mathrm{ML}_{3}\right]=0.360 / 12000$
$\left[\mathrm{ML}_{3}\right]=3.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
therefore, $\quad[\mathrm{M}]=\left(3.25 \times 10^{-5}\right)-\left(3.0 \times 10^{-5}\right)$
$[\mathrm{M}]=0.25 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$[\mathrm{L}] \quad=\left(9.25 \times 10^{-5}\right)-3 \times\left(3.0 \times 10^{-5}\right)$
$[\mathrm{L}] \quad=0.25 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
Hence $\quad \mathrm{K}_{\mathrm{f}}=\left(3.0 \times 10^{-5}\right) /\left(0.25 \times 10^{-5}\right)\left(0.25 \times 10^{-5}\right)^{3}$

$$
\mathrm{K}_{\mathrm{f}} \quad=7.68 \times 10^{17} \mathrm{dm}^{3} \mathrm{~mol}^{-3}
$$

14.2) mole of C : mole of $\mathrm{H}:$ mole of $\mathrm{N}=80 / 12: 4.44 / 1: 15.56 / 14$

$$
=\quad 6.67: 4.44: 1.11
$$

$$
=6: 4: 1
$$

therefore, the empirical formula of L is $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}$
The empirical molar mass $=(6 \times 12)+(4 \times 1)+(1 \times 14)=90$
molar mass/ empirical molar mass $=180 / 2$
Therefore, the molecular formula of L is $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$.
14.3) d-orbital splitting diagram for ML_{3}

Possible isomers of Fe^{2+} complexes

ML :

ML_{2} :

ML_{3} :

Δ_{o} of $\mathrm{ML}<\mathrm{ML}_{2}<\mathrm{ML}_{3} \because \mathrm{H}_{2} \mathrm{O}$ is a weaker field ligand as compared with bipyridine.
14.4)
$\mathrm{A}=\varepsilon \mathrm{bC}$, therefore $\mathrm{C}=\mathrm{A} / \varepsilon \mathrm{b}=0.550 / 12000=4.58 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
The concentration of dialyzable iron is
$4.58 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \times 50.00 / 5.00=4.58 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$4.58 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \times 55.845 \mathrm{~g} \mathrm{~mol}^{-1} \times 1000 \mathrm{mg} \mathrm{g}^{-1}=25.58 \mathrm{mg} \mathrm{dm}^{-3}$
14.5)

From 14.4), the concentration of dialyzable iron is $25.58 \mathrm{mg} \mathrm{dm}^{-3}$ which is also equal to the concentration of iron inside the dialysis bag.

The total volume is $12.50 \mathrm{~cm}^{3}$ (inside the dialysis bag) $+20.00 \mathrm{~cm}^{3}$ (outside the bag) $=32.50 \mathrm{~cm}^{3}$.

Therefore, the total amount of digestible iron is
$\left(25.58 \mathrm{mg} \mathrm{dm}^{-3} \times 32.50 \mathrm{~cm}^{3}\right) /\left(1000 \mathrm{~cm}^{3} \mathrm{dm}^{-3}\right)=0.8314 \mathrm{mg}$
For the supplement of 0.4215 g , the iron content is 0.8314 mg
For the supplement of 1.0000 g , the iron content is $0.8314 \mathrm{mg} \mathrm{x} 1.0000 \mathrm{~g} / 0.4215 \mathrm{~g}$

$$
=1.972 \mathrm{mg}
$$

Task 15. Basic Electrochemistry

15.1)

Anode: $\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-}$
Cathode: : $5 \mathrm{Ce}^{4+}+5 e^{-} \rightleftharpoons 5 \mathrm{Ce}^{3+}$
$\mathrm{Net}: \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Ce}^{4+} \rightleftharpoons \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Ce}^{3+}$
$E^{o}{ }_{\text {cell }}=E^{o}{ }_{\text {cathode }}-E^{o}{ }_{\text {anode }}$
$E^{o}{ }_{\text {cell }}=1.70-1.507=0.193 \mathrm{~V}$
E^{o} cell $=\frac{0.05916}{n} \log K$
$0.193=\frac{0.05916}{5} \log K$
$K=2.05 \times 10^{16}$
15.2)
$5 \mathrm{mg} \mathrm{Ce} e^{4+}\left(\frac{1 \mathrm{~g}}{1000 \mathrm{mg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ce} e^{4+}}{140.12 \mathrm{~g} \mathrm{Ce} e^{4+}}\right)\left(\frac{5 \mathrm{~mol} \mathrm{e}}{5 \mathrm{~mol} \mathrm{Ce}}{ }^{4+}\right)\left(\frac{96,485 \mathrm{C}}{1 \mathrm{~mol}^{-}}\right)=3.44 \mathrm{C}$
15.3)

$$
E_{\text {cell }}=E_{\text {cell }}^{o}-\frac{0.05916}{n} \log Q
$$

Where Q is a reaction quotient.

$$
\begin{aligned}
& E_{\text {cell }}=E_{\text {cell }}^{o}-\frac{0.05916}{n} \log \left[\frac{\left[\mathrm{MnO}_{4}^{-}\right]\left[\mathrm{H}^{+}\right]^{8}\left[\mathrm{Ce}^{3+}\right]^{5}}{\left[\mathrm{Mn}^{2+}\right][\mathrm{Ce}}\right] \\
& E_{\text {cell }}=0.193-\frac{0.05916}{5} \log \left[\frac{[0.001][.001]^{8}[0.01]^{5}}{[0.002][0.01]^{5}}\right] \\
& E_{\text {cell }}=0.481 \mathrm{~V}
\end{aligned}
$$

Task 16. Calculation of Concentration

16.1) mol Cu in $\mathrm{CuCl}_{2} 1.345 \mathrm{~g}=1.345 \mathrm{~g} /\left(63.55+2(35.45) \mathrm{g} \mathrm{mol}^{-1}\right)=0.0100 \mathrm{~mol} \mathrm{Cu}$ mol Cu in $50.00 \mathrm{~cm}^{3}$ of $\mathrm{CuSO}_{4} 31.9 \mathrm{~g} \mathrm{dm}^{-3}$

$$
=\left(50 \mathrm{~cm}^{3} / 1000 \mathrm{~cm}^{3} \mathrm{dm}^{-3}\right) \times\left(31.9 \mathrm{~g} \mathrm{dm}^{-3} / 159.62 \mathrm{~g} \mathrm{~mol}^{-1}\right)=0.00999 \mathrm{~mol} \mathrm{Cu}
$$

Therefore, the total mol Cu is $0.0100+0.00999=0.01999=0.02 \mathrm{~mol}$ $500 \mathrm{~cm}^{3}$ contains 0.02 mol Cu , therefore the concentration is $0.04 \mathrm{~mol} \mathrm{dm}^{-3}$.
16.2) The concentration of Cu in $100.0 \mathrm{~cm}^{3}$

$$
=\left(25.00 \mathrm{~cm}^{3} / 100.0 \mathrm{~cm}^{3}\right) \times 0.04 \mathrm{~mol} \mathrm{dm}^{-3}=0.01 \mathrm{~mol} \mathrm{dm}^{-3} \text { or } 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}
$$

$\mathrm{pH}=8.0$, implying that $\left[\mathrm{OH}^{-}\right]=10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left(10^{-2}\right)\left(10^{-6}\right)^{2}=10^{-14}$ which is greater than the $\mathrm{K}_{\mathrm{SP}\left(\mathrm{Cu}(\mathrm{OH})_{2}\right)}$, i.e., 4.8×10^{-20}
Therefore, the precipitate of $\mathrm{Cu}(\mathrm{OH})_{2}$ is formed.

Task 17. Small Molecule Activation by Frustrated Lewis Pairs

17.1)

$$
\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Br} \xrightarrow[2]{\text { 2. } 1 / 3 \mathrm{BCl}_{3}} \quad 1 / 3 \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}
$$

17.2)

17.3)

17.4)

$$
\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}+\mathrm{P}(t-\mathrm{Bu})_{3} \xlongequal[-\mathrm{H}_{2}]{\stackrel{\mathrm{H}_{2}}{\rightleftharpoons}}\left[\begin{array}{|}
\oplus \\
\mathrm{P}(t-\mathrm{Bu})_{3}
\end{array}\right]\left[\begin{array}{c}
\Theta \\
\mathrm{HB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}
\end{array}\right]
$$

17.5)

$$
\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}+\mathrm{P}(t-\mathrm{Bu})_{3} \xlongequal[-\mathrm{HD}]{\mathrm{HD}}\left[\begin{array}{c}
{\left[\begin{array}{c}
\oplus \\
\mathrm{DP}(t-\mathrm{Bu})_{3}
\end{array}\right]\left[\begin{array}{c}
\Theta \\
\mathrm{HB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}
\end{array}\right]} \\
+ \\
{\left[\begin{array}{c}
\oplus \\
\mathrm{HP}(t-\mathrm{Bu})_{3}
\end{array}\right]\left[\begin{array}{c}
\Theta \\
\mathrm{DB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}
\end{array}\right]}
\end{array}\right.
$$

17.6)
17.7)

17.8)

Task 18. Silver Iodide
18.1) 0

The reduction of Ag^{+}to Ag^{0} causes the change of color.
18.2) $\mathrm{AgF}>\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}$

The stronger interaction between Ag^{+}and I^{-}as well as the low hydration energy of I^{-} result in the poor solubility of AgI. The smaller size of other halide ions led to poorer interaction with Ag^{+}; hence, higher solubility.
18.3) -0.028 V

$$
\Delta G^{\mathrm{o}}=-n F E^{\mathrm{o}}
$$

For (a), $\quad \Delta G^{\mathrm{o}}{ }_{\mathrm{a}}=-(-1)(96,500)(0.80)=-77,200 \mathrm{~J}(\mathrm{~mol} \mathrm{Ag})^{-1}$

$$
\Delta G^{\mathrm{o}}=-R T \ln K
$$

For (c),

$$
\Delta G_{\mathrm{c}}^{\mathrm{o}}=-(8.314)(298)\left(\ln 10^{14}\right)=-79,867 \mathrm{~J} \mathrm{~mol}^{-1}
$$

The reduction half reaction of $\left[\mathrm{AgI}_{3}\right]^{2-}$:
(d) $\left[\mathrm{AgI}_{3}\right]^{2-}(a q)+e^{-} \rightleftharpoons \mathrm{Ag}(s)+3 \mathrm{I}^{-}(a q)$

Eqn $(\mathrm{d})=(\mathrm{a})-(\mathrm{c})$

Therefore, $\quad \Delta G^{\mathrm{o}}{ }_{\mathrm{d}}=\Delta G^{\mathrm{o}}{ }_{\mathrm{a}}-\Delta G^{\mathrm{o}}{ }_{\mathrm{c}}=-77,200-(-79,867)=2,667 \mathrm{~J} \mathrm{~mol}^{-1}$ $E^{\mathrm{o}} \quad=-\Delta G^{\mathrm{o}} \mathrm{d} /(n F)=-(2,667) /(96,500)=-0.028 \mathrm{~V}$
18.4) For trigonal planar,

The ligands lie in the xy plane, then the $d_{x^{2}-y^{2}}$ and d_{xy} orbitals that have their electron density concentrated in this plane will have the highest energy. The d_{xz} and d_{yz} orbitals have their electron density out of this xy plane, so their energies are the lowest. The $d_{z^{2}}$ orbital has its electron density mostly out of the xy plane, but there is a ring of electron density in the xy plane, so the $d_{\mathrm{z}^{2}}$ orbital will have energy higher than the d_{xz} and d_{yz} orbitals but still lower than the $d_{\mathrm{x}^{2}-\mathrm{y}^{2}}$ and d_{xy} orbitals. In addition, the number of d-electrons for silver in $\left[\mathrm{AgII}_{3}\right]^{2-}$ is 10 . Therefore, all d-orbitals should be filled.

Task 19. Perovskite Structure

19.1) Number of Ca^{2+} ions: 8 corners $\times 1 / 8$ ion $\mathrm{Ca}^{2+} /$ corner $=1$

Number of O^{2-} ions: 6 cube faces x $1 / 2 \mathrm{O}^{2-}$ ion/cube face $=3$
Number of Ti^{4+} ions: one Ti^{4+} ion in the cube center $=1$
Therefore, the empirical formula is CaTiO_{3}.
19.2) (1) octahedral hole (4 per unit cell), (2) tetrahedral hole (8 per unit cell)
19.3) Octahedral hole

Task 20. Quantum Numbers and Atomic Orbitals

20.1) (i) $l=n$ is not allowed. For a certain value of n, l can be any value from 0 to $n-1$ (i.e., less than n).
(ii) $m_{l}=-2$ is not possible for $l=1$, because the magnitude of the m_{l} must not be greater than l. (For a certain value of $l, m_{l}=l, l-1, \ldots,-l$.)
(iii) $l=-1$ is not possible. l cannot have a negative value.
20.2) (i) $6 d$
(ii) $4 f$
(iii) $6 p$
20.3) (i) five
(ii) seven
(iii) one

Task 21. Radioactivitiy of Iodine and Nuclear Equations

21.1)
(i) After 2 half-lives, the remaining concentration of I-131 will be as follows:

$$
\begin{equation*}
0.1 \mathrm{~mol} \mathrm{dm}^{-3} \longrightarrow 0.05 \mathrm{~mol} \mathrm{dm}^{-3} \longrightarrow 0.025 \mathrm{~mol} \mathrm{dm}^{-3} \tag{I-131}
\end{equation*}
$$

(ii) After 40 days which is equal to 5 half-lives, the remaining concentration of I- 131 will be as follows:
[I-131]

21.2)
(i) ${ }_{6}^{14} \mathrm{C}$
(ii) ${ }_{+1}^{0} e$ or β^{+}
(iii) ${ }_{25}^{55} \mathrm{Mn}$
(iv) ${ }_{92}^{238} \mathrm{U}$
(v) ${ }_{0}^{1} \mathrm{n}$
(vi) ${ }_{47}^{110} \mathrm{Ag}$
(vii) ${ }_{39}^{96} \mathrm{Y}$
(viii) ${ }_{2}^{4} \mathrm{He}$ or α

Task 22. Structure and Chemistry of Sodium Chloride

22.1) (i) 6 and 6
(ii) 4
(iii) $2.21 \mathrm{~g} \mathrm{~cm}^{-3}$

Density $=m / V$
$V=a^{3}=(560 \mathrm{pm})^{3}=1.76 \times 10^{-22} \mathrm{~cm}^{3}$
mass $=(4 \times 58.5 \mathrm{~g}) /\left(6.022 \times 10^{23}\right)=3.89 \times 10^{-22} \mathrm{~g}$
Density $=3.89 \times 10^{-22} \mathrm{~g} / 1.76 \times 10^{-22} \mathrm{~cm}^{3}=2.21 \mathrm{~g} \mathrm{~cm}^{-3}$
$22.2)$ (i) $n=3, l=0$
(ii) Na is larger than Cl , but Cl^{-}is larger than Na^{+}.

(iv) $-787 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H_{\text {overall }}=-411 \mathrm{~kJ} \mathrm{~mol}^{-1}=\Delta H_{\text {sublimation }}$ for $\mathrm{Na}+I E_{1}$ for $\mathrm{Na}+1 / 2(\mathrm{Cl}-\mathrm{Cl}$ dissociation $)+$ Electron affinity of $\mathrm{Cl}+$ lattice energy
$-411 \mathrm{~kJ} \mathrm{~mol}^{-1}=107 \mathrm{~kJ} \mathrm{~mol}^{-1}+1 / 2(224) \mathrm{kJ} \mathrm{mol}^{-1}+496 \mathrm{~kJ} \mathrm{~mol}^{-1}-349 \mathrm{~kJ} \mathrm{~mol}^{-1}+$ lattice energy
lattice energy $=-787 \mathrm{~kJ} \mathrm{~mol}^{-1}$
22.3) (i) $\mathrm{Br}_{2}(l)+\mathrm{Cl}^{-}(a q) \rightarrow$ no reaction
(ii) $\mathrm{Cl}^{-}(a q)+\mathrm{Ag}^{+}(a q) \rightarrow \mathrm{AgCl}(s)$
(iii) Yellow

Task 23. Natural Chelator from Shrimp Shell

23.1) The preferred binding sites are indicated in the circles as follows:

23.2)

Pb^{2+} is a soft metal ion so it prefers to form bond with sulfur. This helps PMCS adsorb Pb^{2+} better.
23.3) meso-tetra(p-carboxyphenyl)porphyrin can form ester bond with chitosan as shown in the proposed structure below:

Or amide bonds are formed as below:

23.4) One of the structures in question 23.3 was chosen to bond with Fe^{2+} as the proposed structure below.

The two vacant axial sites are bonding with water molecules.

Assuming that the crystal fields are equivalent along the x, y, and z axes, the splitting diagram of $\mathrm{Fe}^{2+} d$ orbitals is shown below:

Task 24. Compound Identification and Related Chemistry

24.1) $\quad \mathbf{M C l}_{3}$ and $\mathbf{M}=\mathrm{Al}$

Theoretically, the maximum amount of the product is obtained when the mole fraction of \mathbf{M} and $\mathbf{C l}_{2}$ are in the correct stoichiometric ratio. Based on the experiments, $\mathbf{M}: \mathrm{Cl}_{2}=0.4: 0.6$ or 2/3 is the stoichiometric ratio needed to form $\mathbf{M}_{\mathrm{x}} \mathrm{Cl}_{\mathrm{y}}$. Thus, the equation is as follows:

$$
2 \mathbf{M}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathbf{M C l}_{3}
$$

\therefore the chemical formula of $\mathbf{M}_{\mathrm{x}} \mathrm{Cl}_{\mathbf{y}}=\mathbf{M C l}{ }_{3}$
Since 0.4 mole of \mathbf{M} generates 0.4 mole of $\mathbf{M C l}_{3}$, the molar mass of $\mathbf{M C l}_{3}$ and atomic mass of \mathbf{M} can be derived:

Molar mass of $\mathbf{M C l}_{3}=53.3 \mathrm{~g} / 0.40 \mathrm{~mol}=133 \mathrm{~g} \mathrm{~mol}^{-1}$
Atomic mass of $\mathbf{M}=133-(3 \times$ atomic mass Cl$)=133.3-(3 \times 35.45)=26.9 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\therefore \mathbf{M}=\mathrm{Al}
$$

24.2) (i) $\mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl}$
(ii) $2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{HCl}$

Task 25. Isomerism of Octahedral Fe(II) Complexes
25.1)

isomer \mathbf{B}^{*}
$\operatorname{cis}(\mathrm{Cl}, \mathrm{Cl})$
$\operatorname{cis}\left(\mathrm{N}^{\prime}, \mathrm{N}^{\prime}\right), \operatorname{trans}(\mathrm{N}, \mathrm{N})$

isomer C $\operatorname{cis}\left(\mathrm{N}^{\prime}, \mathrm{N}^{\prime}\right), \operatorname{cis}(\mathrm{N}, \mathrm{N}) \quad \operatorname{trans}\left(\mathrm{N}^{\prime}, \mathrm{N}\right), \operatorname{trans}(\mathrm{N}, \mathrm{N})$

isomer \mathbf{E}
cis(Cl,Cl)
$\operatorname{cis}\left(\mathrm{N}^{\prime}, \mathrm{N}^{\prime}\right), \operatorname{cis}(\mathrm{N}, \mathrm{N})$

isomer \mathbf{E}^{*}
$\operatorname{cis}(\mathrm{Cl}, \mathrm{Cl})$
$\operatorname{cis}\left(\mathrm{N}^{\prime}, \mathrm{N}^{\prime}\right), \operatorname{cis}(\mathrm{N}, \mathrm{N})$
25.2) isomers $\mathbf{A}, \mathbf{A}^{*}, \mathbf{B}, \mathbf{B}^{*}, \mathbf{E}$, and \mathbf{E}^{*}

Task 26. Stoichiometry and Structure Determination

26.1)
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$
Solution: \quad \% by weight C : H:O $=65.0: 6.10: 28.9$
\% by mol C : $\mathrm{H}: \mathrm{O}=\frac{65.0}{12.0}: \frac{6.10}{1.01}: \frac{28.9}{16.0}$
$=5.42: 6.04: 1.81$
\therefore empirical formula $\mathrm{C}: \mathrm{H}: \mathrm{O}=9: 10: 3$
26.2)

26.3)

Task 27. Atropine

27.1)

A
tropinone $\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}\right)$

B
tropine $\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}\right)$
27.2)

27.3)

H : atropine
27.4)

$$
\stackrel{\mathrm{I}}{\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}}
$$

J

K

Task 28. Synthesis of Building Blocks for Fluorescent Markers
Compounds A-I are shown below:

Task 29. Synthesis towards Anatoxin-a

Task 30. Total Synthesis of Illudin C

The structures of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} :

$\xrightarrow{\text { chloramine-T }}$

D

Illudin C

Task 31. Total Synthesis of μ-Opioid Receptor (MOR) Agonists

(-)-mitragynine 27\%

(Z)-mitragynine 31%

Task 32. Pericyclic Reaction

32.1)

Intermediate B (Enolate)
32.2)
(i) Structures of compounds C-G

C
D

F
G
(ii)

Either position on compound $\mathbf{1}$ is correct.
(iii) Two.

Reaction between $\mathbf{1}$ and $\mathbf{2}$ will give a pair of enantiomers which are inseparable. (Note: the two enantiomers can be resolved but this process is not mentioned in the context.) The subsequent processes, although generated a few new chiral centers, employed achiral reagent and the newly formed stereocenters were controlled by the existing stereochemistry. Therefore, stereochemical information was carried over from compound \mathbf{C} to compound $\mathbf{3}$.
(i)

I

J
(ii) Racemic mixture of \mathbf{H} will give product \mathbf{I} which has a plane of symmetry. Therefore, reduction of \mathbf{I} (only a stereoisomer) will give only 1 possible product \mathbf{J}.

I

I^{\prime}

Note: Compound I has a plane of symmetry, thus its mirror image (compound I') is identical (meso-compound).

Task 33. Stereoisomers without Stereocenter

Hint: Student is encouraged to use chemistry model to figure out the plane of symmetry and the C_{2}-symmetry in each molecule.
33.1) (i) From the possible enantiomeric pair,

The molecule has a plane of symmetry, therefore, the structure is achiral.
(ii) From the possible enantiomeric pair,

There is no plane of symmetry in these two molecules. Therefore, these two mirror image structures are non-superimposable. The structure is chiral.
(iii) From the structure of cumulene,

This molecule is flat. As a result, there is a plane of symmetry in this molecule. Consequently, its mirror image is achiral.
(iv) From the possible enantiomeric pair,

There is no plane of symmetry in these two molecules. Therefore, these two mirror image structures are non-superimposable. The structure is chiral.

33.2 (i)

trans-cyclooctene

trans-cyclononene

Enantiomers of trans-cyclooctene and trans-cyclononene are shown above. The two different structures are mirror images of each other and they are non-superimposable.
(ii) The enantiomers of both cycloalkanes are configurational isomers. The enantiomers can be interconverted via the ring flipping, similar to that of the chair cyclohexane. The trans double bond adds a considerable degree of rigidity to the ring. Since the trans-cyclononene has more carbon atoms so it is more flexible and can undergo the configuration inter-conversion more readily.

