Spectroscopie Infra-Rouge

Table des nombres d'onde des vibration de valence et de déformation

Liaison	Nature	Nombre d'onde cm ⁻¹	Intensité
O-H alcool libre	élongation	3580-3670	F, large
O-H alcool lié	élongation	3200-3400	F, large
N-H amine	élongation	3100-3500	m
C-H (C _{digonal})	élongation	3300-3310	
C-H (C _{trigonal})	élongation	3000-3100	m ou f
C-H aromatique	élongation	3030-3080	m
C-H (C _{tétraonal})	élongation	2800-3000	m
C-H aldéhyde	élongation	2750-2900	F
O-H acide carboxylique	élongation	2500-3200	M
C≡C ; C≡N	élongation	2100-2250	F à m; large
C=O (anhydride)	élongation	1700-1840	F ou m
C=O (chlorure d'acyle)	élongation	1770-1820	F ; 2 bandes
C=O (ester)(*)	élongation	1700-1740	F
C=O (aldéhyde et cétone)(*)	élongation	1650-1730	F
C=O (acide)(*)	élongation	1680-1710	F
C=C	élongation	1625-1685	F
C=C aromatique	élongation	1450-1600	m (3 ou 4 bandes)
N=O	élongation	1510-1580 et 1325-1365	F ;2 bandes
N-H amine ou amide	déformation	1560-1640	F ou m

F: fort, m : moyen; f: faible ; (*) : abaissement de 20 à 30 cm⁻¹ si conjugaison

Spectroscopie de RMN ¹H

Déplacements chimiques moyens de quelques noyaux d'hydrogène (protons) δ est exprimé en ppm par rapport au TMS pris comme référence R est un groupe aliphatique saturé, Ar un groupe aromatique

Noyaux CH₃	δ/ppm	Noyaux CH₂	δ/ppm	Noyaux CH	δ/ppm	
Lié à un C AX₃		Lié à un C AX₃		Lié à un C AX₃		
H₃C-C	0,9	H₂C-C	1,3	HC-C	1,5	
H₃-C-C-OH(ou OR)	1,15-1,3	H₂C-C-OH(ou OR)	1,8	HC-C-OH(ou OR)	1,6-2	
En α d'une insaturation		En α d'une insaturation En α d'une insaturation				
H ₃ C-C=C	1,6	$H_2C-C=C$	2,1-2,3	HC-C=C	2,5	
H₃C-CO-OR	2,0	H₂C-C≡C	2,6	HC-CO-OH	2,6	
H₃C-CO-OH	2,1	H₂C-CO-OR	2,2	HC-CO-R	2,5-2,7	
H₃C-CO-R	2,1-2,2	H₂C-CO-OH	2,35	HC-Ar	3,0	
H₃C-Ar	2,3-2,4	H ₂ C-CO-R	2,4			
		H₂C-Ar	2,7			
Lié à un hétéroatome		Lié à un hétéroatome		Lié à un hétéroatome		
H₃C-OR	3,3	H₂C-OR	3,4	HC-OR	3,7	
H₃C-OH	3,4	H ₂ C-OH	3,6	HC-OH	3,9	
H₃C-OCOR	3,7	H₂C-OCOR	4,2	HC-OCOR	4,8-5,1	
H₃C-Cl	3,0	H₂C-Cl	3,6	HC-Cl	4,0	
Lié à un C insaturé		Portés par un hétéroatome. Leur position dépend considérablement du solvant				
-C≡CH	_//-	et de la concentration. Ils peuvent ne pas être visibles ; ils sont échangeables.				
-C=CH-	4,5-6,5	ОН		NH		
Ar-H	6,5-8	Alcool (ROH) : 0,7-5,5		Amine R₂NH : 0,5-5,0		
RCH=O	9,5-10,0	Phénol (ArOH) : 4,5-10		Amide O=CNH : 6-9		
		Acide (R-CO-OH): 10,5-12,5				

$$^{3}J = 6 - 8 \text{ Hz}$$

$$^{\prime\prime\prime\prime\prime\prime\prime\prime\prime\prime}$$
C $^{\prime\prime}$ $^{\prime$

$$H_a$$
 $C=C$ H_b H_c

$${}^{2}J_{ab} = 0 - 3 \text{ Hz}$$
 ${}^{3}J_{ac} = 12 - 18 \text{ Hz}$ ${}^{3}J_{bc} = 6 - 12 \text{ Hz}$ ${}^{3}J_{cd} = 5 - 10 \text{ Hz}$