Préparation française des Olympiades Internationales de Géosciences

Test de validation de la formation

7-11 avril 2014

- Le test comprend 46 questions, sur 29 pages.
- La durée du test est de 1 heure 50 ; il faut prévoir dix minutes à la fin des deux heures pour saisir vos réponses sur le formulaire (feuille de tableur).
- Vous rendrez la version imprimée du test à votre enseignant, après avoir inscrit votre nom, prénom, date de naissance, classe et établissement.
- Les questions sont des questions à choix multiple (une ou plusieurs bonnes réponses). Vous entourerez au stylo la ou les lettres correspondant à la réponse de votre choix.
- Il y a toujours au moins une réponse juste : si vous ne cochez aucune lettre, ou si vous les cochez toutes, la question ne sera pas notée.
- Les réponses exactes sont prises en compte positivement ; les réponses fausses pourront donner lieu à une pénalisation.
- Pour certaines parties, les questions posées peuvent relever de plusieurs domaines: atmosphère/géosphère/hydrosphère/espace.
- L'usage de la calculatrice est interdit.

[^0]Signature :

Exercice 1 : Comprendre Titan à la lumière de la Terre

Document 1
La surface de Titan (vue d'artiste).
© 2004 NASA

Titan, le plus gros satellite de Saturne, est l'objectif principal de la mission Cassini Huygens.

D'un diamètre de 5150 km , le satellite est constitué d'un mélange de glace $\left(\mathrm{H}_{2} \mathrm{O}\right)$, de silicates et de fer. L'atmosphère dense et opaque de Titan est riche en N_{2} et contient environ 2% de méthane. Les conditions de pression et de température à la surface de Titan autorisent la présence de méthane sous ces trois états.

De nombreuses images de la surface de Titan ont été obtenues au cours des survols effectués par la sonde spatiale de la mission Cassini Huygens. Elles constituent une source d'information essentielle pour analyser la géologie de Titan en la comparant à celle de la Terre.

Document 2
Image issue du SIG développé au LPGNantes

1. Les formes circulaires observées à la surface de Titan (document 2) pourraient être :
A. Des traces d'atterrissage de sondes antérieures à la mission Cassini.
B. Des canyons.
C. Des caldeiras, dépressions circulaires se formant lors d'une vidange magmatique.
D. Des fosses de subduction.
E. Des cratères d'impact météoritiques.
F. Des auréoles de métamorphisme.

2. Très peu de cratères d'impacts météoritiques ont été identifiés avec certitude sur Titan. Quelles hypothèses raisonnables pourraient expliquer cette observation ?
A. Le fait que Saturne et ses anneaux protègent Titan du bombardement météoritique.
B. L'existence de phénomènes d'érosion physique à la surface de Titan.
C. L'existence de phénomènes de recyclage de la lithosphère.
D. Le fait que le champ magnétique généré par la rotation de Titan autour de Saturne protège Titan du bombardement.
E. L'existence d'une atmosphère épaisse empêche les météorites de pénétrer dans l'atmosphère, même celles de grande taille.

On s'intéresse à la géodynamique externe de Titan. L’image obtenue par la sonde Cassini lors d'un survol de Titan (document 3) rappelle des modelés que l'on retrouve sur Terre (document 4).

Document 3

Lancaster, 2006; Lorenz, 2006

Document 4

3. Les structures observées (documents $\mathbf{3}$ et $\mathbf{4)}$) pourraient être :
A. Des dykes volcaniques mis en surface par l'érosion.
B. Des ripple marks, des rides de courant liées à la dynamique d'un littoral.
C. Des dunes, liées à des dépôts éoliens.
D. Des linéations minéralogiques.

Le document 5 représente schématiquement le détail des structures observées dans les documents 3 et 4 .

Document 5

4. Quels mécanismes participent à la formation de ces structures (document 5) ?
A. Grâce au déplacement horizontal d'un fluide selon la direction A-B.
B. Grâce au déplacement horizontal d'un fluide selon la direction X-Y.
C. Grâce au mouvement oscillatoire d'un fluide de A vers B puis de B vers A.
D. Grâce au mouvement oscillatoire d'un fluide de X vers Y puis de Y vers X .
E. Grâce à l'arrachement et au dépôt de particules par un fluide qui circule de A vers B.
F. Grâce à l'arrachement et au dépôt de particules par un fluide qui circule de B vers A.
G. Grâce à l'arrachement et au dépôt de particules par un fluide qui circule de X vers Y .
H. Grâce à l'arrachement et au dépôt de particules par un fluide qui circule de Y vers X .
5. Les structures du document 3, et par analogie celles du document 4, sont le résultat d'un couplage :
A. Entre l'atmosphère et l'hydrosphère.
B. Entre l'atmosphère et la géosphère.
C. Entre l'hydrosphère et la géosphère.
D. Entre l'atmosphère, l'hydrosphère et la géosphère.

Comme le document 5 le montre, on trouve à la surface de Titan des galets transportés par un fluide.

Document 6

Titan

Document 7 : Diagramme de Hjulström

6. En considérant que les processus de transport et de dépôt sont comparables sur la Terre et sur Titan, l'agent qui a transporté les objets observés sur le document 5 circulait à une vitesse :
A. De l'ordre du mètre par an ou plus lent.
B. De l'ordre du mètre par mois.
C. De l'ordre du mètre par jour.
D. De l'ordre du mètre par heure.
E. De l'ordre du mètre par minute.
F. De l'ordre du mètre par seconde ou plus rapide.

Document 8

Lorenz et al. (2008a); Cartwright et al. (2011); Langhans et al. (2012)
La surface de Titan présente des structures interprétées comme des réseaux fluviatiles (document 7) comparables aux cours d'eau terrestres.

Document 9 : Vallée du Vénéon, France

http://chartreuse-climbingclub.over-blog.fr
Document 10 : Vallée de la Sioule, France

Jean-Marc Aubelle
7. Quel(s) paramètre(s) expliquent la différence de morphologie entre la rivière du document 9 et la rivière du document 10 ?
A. La vitesse du courant.
B. La pente.
C. La taille des particules transportées par le cours d'eau.
D. La température.
8. Sur le document 9 , le relief s'explique par :
A. L'érosion importante due au passage d'un glacier.
B. Le mouvement de blocs le long d'une faille normale.
C. Le mouvement de blocs le long d'une faille inverse.
D. L'érosion importante due à un cours d'eau.
E. La formation de deux volcans boucliers.
F. La formation de deux stratovolcans.
9. Lesquelles de ces affirmations sont vraies ?
A. Sur le document 10 , la zone A est en érosion et la zone B en sédimentation.
B. Sur le document 10 , la zone A est en sédimentation et la zone B en érosion.
C. Sur le document 10 , la zone A et la zone B sont en érosion.
D. Sur le document 10 , la zone A et la zone B sont en sédimentation.

Sur Titan, les observations radar ont mis en évidence une tache sombre de 40 km de large et 300 km de long aux coordonnées : $180^{\circ} \mathrm{E} ; \mathbf{7 2}^{\circ} \mathrm{S}$ observable sur le document 11 . Cette tache sombre est interprétée comme étant un lac (schématisé sur le document 12).

Document 11

Ontario Lacus $\left(72^{\circ} \mathrm{S}, 180^{\circ} \mathrm{E}\right)$, Titan Cassini RADAR SAR image, Credits:JPLNASA

Document 12
Carte interprétative de la géomorphologie de la région

Thomas Cornet, 2012
10. Lesquelles de ces affirmations sont vraies ?
A. Sur les documents 11 et 12 , on observe un lac de méthane entouré de nuages.
B. Sur les documents 11 et 12 , on observe un lac de méthane dont le niveau est variable
C. Sur les documents 11 et 12, on observe une zone contrôlée probablement par un climat aride.
D. Sur les documents 11 et 12 , on observe un lac d'hydrocarbures alimenté par des précipitations importantes de méthane.

Document 13 : la photolyse du méthane

Les ultraviolets solaires, en provoquant la photolyse du méthane peuvent libérer des radicaux carbonés selon les réactions de photodissociation suivantes :

$$
\begin{gathered}
\mathrm{CH}_{4}+\mathrm{h} v \rightarrow \mathrm{CH}_{3}+\mathrm{H} \\
\mathrm{CH}_{4}+\mathrm{h} v \rightarrow \mathrm{CH}_{2}+\mathrm{H}_{2} \\
\mathrm{CH}_{4}+\mathrm{h} v \rightarrow \mathrm{CH}+\mathrm{H}_{2}+\mathrm{H}
\end{gathered}
$$

Les radicaux carbonés ainsi formés sont susceptibles de former des hydrocarbures complexes.

$$
\mathrm{CH}_{2}+\mathrm{CH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}
$$

Document 14 : la magnétosphère d'une planète

La magnétosphère est la région entourant un objet céleste dans laquelle les phénomènes physiques sont dominés ou organisés par son champ magnétique. Le champ magnétique d'une planète, dévie les particules de haute énergie du vent solaire et des rayons cosmiques. Lorsqu'un corps céleste n'est pas protégé par une magnétosphère, les particules de haute énergie du vent solaire favorisent certaines réactions chimiques dans l'atmosphère comme les réactions de photodissociation.

Document 15 : la magnétosphère de Saturne

Magnétosphère de Saturne

QJCBoulay
11. La formation d'hydrocarbures complexes dans l'atmosphère de Titan s'explique par :
A. La photodissociation du méthane par les UV.
B. La photodissociation du méthane par les radicaux carbonés.
C. La présence de Titan en dehors de la magnétosphère de Saturne.
D. La présence de Titan à l'intérieur de la magnétosphère de Saturne.
E. L'absence de magnétosphère sur Titan.
F. La présence d'une magnétosphère sur Titan.

La mission Cassini Huygens a permis l'observation de systèmes fluviatiles et de lacs à la surface de Titan.
12. La présence de systèmes fluviatiles et de lacs à la surface de Titan est vraisemblablement :
A. Contrôlée par un cycle de l'eau analogue à celui que l'on retrouve sur Terre
B. Contrôlé par un cycle du méthane
C. Contrôlée par l'interaction entre les systèmes atmosphère et hydrosphère uniquement.
D. Contrôlée par l'interaction entre les systèmes atmosphère et géosphère uniquement.
E. Contrôlée par l'interaction entre les systèmes hydrosphère et géosphère uniquement.
F. Contrôlée par l'interaction entre les systèmes atmosphère, hydrosphère et géosphère.
G. Contrôlée par l'interaction entre les systèmes atmosphère et méthanosphère uniquement.
H. Contrôlée par l'interaction entre les systèmes atmosphère et géosphère uniquement.
I. Contrôlée par l'interaction entre les systèmes méthanosphère et géosphère uniquement.
J. Contrôlée par l'interaction entre les systèmes atmosphère, méthanosphère et géosphère.

Exercice 2 : Questionnaire «Astronomie»

13. Le volcanisme observé sur Vénus et sur la Terre s'explique par :
A. La dérive des continents.
B. La libération de l'énergie produite au cœur de la planète.
C. Le champ magnétique de ces planètes.
D. Les impacts d'astéroïdes sur la croûte continentale et océanique.
E. Des causes complétement inconnues des scientifiques aujourd'hui.
14. L'effet de serre s'explique par :
A. L'ozone qui capte le rayonnement solaire.
B. L'ozone qui capte le rayonnement terrestre.
C. La radioactivité de certains composants de l'atmosphère.
D. L'inertie thermique des océans qui conserve la chaleur plus longtemps.
E. L'inertie thermique des continents qui conserve la chaleur plus longtemps.
F. L'absorption, par certains composants de l'atmosphère, des rayons infrarouge émis par la surface de la Terre.
G. L'absorption, par certains composants de l'atmosphère, des rayons infrarouge émis par le soleil.
H. L'alternance jour / nuit.
I. Les saisons.
15. Io est le corps le plus volcanique du Système Solaire car:
A. Son noyau est constitué d'une grande quantité de roches radioactives.
B. Il subit les effets de marée dus à la proximité de Jupiter.
C. Le phénomène d'accrétion originelle permet une libération de chaleur encore aujourd'hui.
D. Le rayonnement solaire interagit avec les composants de la surface de Io.
E. Le puissant champ gravitationnel de Jupiter attire de nombreuses astéroïdes qui impactent la surface de Io et déstabilisent la surface.
16. Lesquelles de ces affirmations sont fausses:
A. Triton, le satellite de Neptune est plus chaud que sa planète.
B. On a découvert plus de 150 satellites dans le système solaire autour des planètes géantes.
C. Les petits corps possèdent également des satellites.
D. Les satellites Galiléens sont ainsi dénommés en l'honneur de leur découvreur l'astronome allemand Johann Gottfried Galle, également connu pour avoir observé la première planète Neptune.
E. On a découvert des lacs liquides à la surface de Titan.
17. Lesquelles de ces affirmations sur les satellites Galiléens de Jupiter sont vraies?
A. Ils possèdent tous une atmosphère ténue.
B. Europe possèdent sans doute un océan liquide sous sa banquise.
C. Io émet de la lave en permanence.
D. Ganymède est plus gros que Mercure.
E. Ils sont en rotation synchrone comme notre Lune.
18. Selon la nouvelle définition du mot «planète» votée le 24 août 2006 à Prague, une planète :
A. Possède une taille supérieure ou égale à celle de Pluton (2300 km).
B. Possède une masse suffisante pour que sa gravité propre l'emporte sur les forces de cohésion interne ce qui lui donne une forme presque ronde.
C. A nettoyé l'environnement autour de son orbite.
D. Possède une atmosphère.
E. Possède un centre de masse pour le système «planète - satellite» au coeur de la planète.

Exercice 3 : Questionnaire «Atmosphère - Hydrosphère»

19. Au-dessus d'une surface océanique chaude au voisinage de l'équateur, on observe :

A. Un temps chaud et sec au-dessus d'une mer chaude avec un ciel sans nuage.
B. Un temps chaud et sec au-dessus d'une mer chaude avec un ciel très nuageux.
C. Un temps chaud et humide sous des averses avec des nuages très développés sur la verticale.
D. Un temps chaud et humide sous des averses avec des nuages très développés sur l'horizontale.
E. Un temps humide avec des pluies continues.
F. Un temps doux avec quelques nuages de beau temps et une légère brise d'alizés.
20. Au-dessus d'une surface océanique froide au voisinage de l'équateur, on observe :
A. Un temps couvert avec des nuages stratiformes non précipitants.
B. Un temps variable avec des averses.
C. Un temps brumeux avec des brouillards nocturnes.
D. Un temps stable avec des nuages élevés sans pluie.
E. Un temps ensoleillé et sec.

21. Lesquelles de ces affirmations sont vraies?

A. L'équateur est chaud en temps normal et davantage encore lors d'un phénomène «El Niño».
B. Le Pacifique Ouest est normalement chaud en surface, le phénomène «El Niño» déplace la zone chaude à l'est.
C. Le Pacifique Est est normalement chaud en surface, le phénomène «El Niño» déplace la zone chaude à l'ouest.
D. La zone froide est située sur le littoral latino-américain et se prolonge sur la zone équatoriale jusqu’à l'ouest du bassin. Lors d'un phénomène «El Nińo », cette zone se déplace vers le sud.
E. La zone froide est située sur le littoral latino-américain et se prolonge sur la zone équatoriale jusqu’à l'ouest du bassin. Lors d'un phénomène «El Niño », cette zone se déplace vers le nord.
F. Une zone de forte convection se trouve au-dessus de la zone chaude indonésienne, lors d'un épisode «El Nińo », cette zone se déplace vers l'est et fait le tour du globe au bout de 30 à 40 jours.

22. Lors d'un épisode «El Niño»:

A. Les pluies tropicales sur la ZCIT sont renforcées et le risque cyclonique augmente.
B. Le réchauffement de l'eau sur les côtes du Pérou perturbe la pêche.
C. Le refroidissement de l'eau sur les côtes du Pérou perturbe la pêche.
D. Les précipitations sur le Pérou peuvent être catastrophiques et générer des glissements de terrain.
E. Les précipitations en Indonésie peuvent être catastrophiques et générer des glissements de terrain.
F. L'Indonésie connaît une sécheresse anormale et des incendies.
G. Le Pérou connaît une sécheresse anormale et des incendies.
23. Le phénomène «El Niño» est un exemple de couplage :
A. Atmosphère - Hydrosphère
B. Atmosphère-Géosphère
C. Hydrosphère - Géosphère.

Le littoral atlantique français a été touché entre décembre 2013 et février 2014 par plusieurs épisodes météorologiques sévères. La tempête du 14 février 2014 est caractérisée par l'intensité des vents sur la Bretagne. Les cartes V1 à V4 ci-après correspondent au champ de vent à 10 m du sol fourni par le modèle de Météo-France à plusieurs échéances; elles traduisent le renforcement du vent (augmentation du nombre de barbules) sur la région à partir du 14 janvier à 0 h jusqu'au maximum observé vers 18 h , puis sa baisse d'intensité. Les cartes P1 à P5 devraient indiquer les champs de pression correspondant aux mêmes échéances, mais elles ont malencontreusement été mélangées. Il vous est donc demandé de retrouver, pour chacune des cartes de vent V1 à V5 à quelle carte de pression Pi, (i allant de 1 à 5) elle correspond.

V1 Echéance du

14 février 2014
à 00hUTC
Source : Météo-France

V2 Echéance du

14 février 2014
à 12 hUTC
Source : Météo-France

V3 Echéance du
14 février 2014
à 18 hUTC
Source : Météo-France

V4 Echéance du
15 février 2014
à 00hUTC
Source : Météo-France

V5 Echéance du
16 février 2014
à 00hUTC
Source : Météo-France

Carte de pressions P3
Source : Météo-France

Carte de pressions P5
Source : Météo-France
24. Lequel de ce tableau est le bon?

A -

Carte de vent et échéance	Carte de pression associée
V1 - 14 février 2014 à 00 hUTC	P1
V2 - 14 février 2014 à 12 hUTC	P4
V3 - 14 février 2014 à 18 hUTC	P3
V4 - 15 février 2014 à 00hUTC	P5
V5 - 16 février 2014 à 00hUTC	P2

B -

Carte de vent et échéance	Carte de pression associée
V1 - 14 février 2014 à 00 hUTC	P3
V2 - 14 février 2014 à 12 hUTC	P5
V3 - 14 février 2014 à 18 hUTC	P1
V4 - 15 février 2014 à 00hUTC	P2
V5 - 16 février 2014 à 00hUTC	P4

C -

Carte de vent et échéance	Carte de pression associée
V1 -14 février 2014 à 00 hUTC	P 2
V2 -14 février 2014 à 12 hUTC	P 3
V3 -14 février 2014 à 18 hUTC	P5
V4 -15 février 2014 à 00 hUTC	P 1
V5 -16 février 2014 à 00 hUTC	P 4

D

Carte de vent et échéance	Carte de pression associée
V1 - 14 février 2014 à 00 hUTC	P2
V2 - 14 février 2014 à 12 hUTC	P4
V3 - 14 février 2014 à 18 hUTC	P1
V4 - 15 février 2014 à 00 hUTC	P3
V5 - 16 février 2014 à 00 hUTC	P5

Exercice 4 : Questionnaire «Géosphère»

25. Un pluton granitique est intrusif dans une série sédimentaire composée de calcaires et de grès. Quelles sortes de roches métamorphiques pourront se former ?
A. Marbre et quartzite.
B. Schiste et marbre.
C. Schiste et gneiss.
D. Quartzite et gneiss.
26. Dans les paires de minéraux suivantes, lesquelles peuvent se trouver dans le même type de roche magmatique?
A. Olivine et pyroxène.
B. Olivine et quartz.
C. Biotite et quartz.
D. Plagioclase et pyroxène.
27. Laquelle de ces roches résulte de l'interaction entre l'Hydrosphère et la Biosphère ?
A. Le grès.
B. Le sel.
C. Le calcaire.
D. Le granite.
28. Où se place dans l'échelle de temps une roche qui contient des fossiles de poissons, de trilobites et de brachiopodes?
A. Paléozoïque.
B. Mésozoïque.
C. Protérozoïque.
D. Cénozoïque.
29. Il est établi que la Terre se refroidit en permanence. A quel niveau se trouve le flux maximal de chaleur ?
A. Les dorsales océaniques.
B. Les zones de subduction.
C. Les chaînes de montagnes.
D. Les boucliers précambriens.
30. Quel est le dernier minéral à se former dans la série réactionnelle de Bowen ?
A. L'olivine.
B. Le quartz.
C. L'orthose.
D. La biotite.
E. Le pyroxène.
31. Par quoi se caractérise la discontinuité de Mohorovicic ?
A. Un changement dans la vitesse des ondes sismiques.
B. Un changement important de température.
C. Un changement important du champ de gravité.
D. Une atténuation des ondes de Rayleigh.
E. Un changement important de la pression.
F. Un changement de composition chimique des roches.

Exercice 5 : Hydrologie et Climatologie aux Etats-Unis

Document 1 : Quelques bassins versants d'Amérique du Nord

FLEUVE	EMBOUCHURE
1 Yukon	Mer de Béring
2 Mackenzie-Paix	Mer de Beaufort
3 Nelson	Baie d'Hudson
4 Grands Lacs-St Laurent	Océan Atlantique
5 Columbia	Océan Pacifique
6 Missipi-Missouri	Golfe du Mexique
7 Colorado	Golfe de Californie
8 Rio Grande	Golfe du Mexique

32. Lesquelles de ces affirmations sont vraies ?
A. Le Missouri (4370 km), plus grand affluent du Mississipi (3779 km), peut être considéré comme un fleuve en raison de sa taille.
B. Les lignes de partage des eaux sont souvent des crêtes du relief.
C. Les bassins ici définis sont tous endoréiques.
D. Les bassins ici définis sont tous exoréiques.
E. L'ensemble des limites qui séparent les zones (1-5-7-8) d'une part des zones (2-3-4-6) d'autre part constitue une ligne de partage des eaux.
F. L'ensemble des limites entre les zones 1-5-7 d'une part, et (2-3-4-6-8) d'autre part constitue une ligne de partage des eaux.
G. Les limites entre les zones 6 et 3-4 forment une ligne de partage des eaux.

On se propose de retrouver les éléments d'un raisonnement qui relie les changements climatiques survenus depuis 20000 ans avec l'évolution des bassins versants du nord de l'Amérique et celle d'un lac aujourd'hui disparu, le lac Agassiz. Pour cela, avec vos connaissances et des informations tirées des documents, vous chercherez à comprendre :

- l'évolution du climat au cours de cette période
- l'évolution du lac Agassiz et des bassins versants du Nord de l'Amérique

Document 2 : Utilisation des isotopes stables de l'oxygène et connaissance des climats

${ }^{18} \mathrm{O}$ et ${ }^{16} \mathrm{O}$ sont deux isotopes stables de l'oxygène. ${ }^{16} \mathrm{O}$ est le plus abondant, mais la proportion des deux isotopes peut varier par fractionnement physique. Dans le cycle de l'eau, si toute l'eau évaporée retombe sous forme de pluie et retourne aux océans, la proportion reste inchangée. Par contre, en période glaciaire, l'eau précipitée en particulier sous forme de neige reste immobilisée dans les glaciers, relativement plus riches en ${ }^{16} \mathrm{O}$ alors que les océans s'enrichissent relativement en ${ }^{18} \mathrm{O}$. A partir des quantités des deux isotopes, on calcul un indice, le $\delta^{18} 0$ qui présente les caractéristiques suivantes :

- pour une période donnée, le $\delta^{18} \mathrm{O}$ varie en sens inverse dans les glaciers et dans les océans ;
- plus le climat est chaud, plus le $\delta^{18} \mathrm{O}$ est élevé dans les glaces (moins de ${ }^{16} \mathrm{O}$), et faible dans les océans (plus de ${ }^{16} \mathrm{O}$).

Aux différentes valeurs de cet indice on peut associer une température, et ainsi reconstituer les variations climatiques. Enfin, on peut également mesurer le $\delta^{18} \mathrm{O}$ des tests des foraminiferes marins benthiques, actuels et fossiles, dont la valeur est évidemment proche de celle de l'eau des océans à la période de vie de ces organismes.

Document 3 : Enregistrement du $\boldsymbol{\delta}^{18} \mathrm{O}$ dans la calotte de glace groenlandaise GISP2

Document 4 : Mesure du $\delta^{18} \mathrm{O}$ dans les foraminifères

Vers 11000 ans on constate que les Foraminifères benthiques du Golfe du Mexique ont leur test calcaire enrichi en ${ }^{16} \mathrm{O}$, par rapport à ceux des périodes géologiques précédentes mais aussi par rapport à ceux des autres régions Atlantiques de même latitude et de même époque. Vers 8000 ans , la proportion de ${ }^{16} \mathrm{O}$ est identique dans ces mêmes zones de l'Atlantique.

33. D'après le document 3, lesquelles de ces affirmations sont vraies?

A. Il y a 18000 ans, le climat est relativement froid, 4000 ans plus tard, le climat se refroidit davantage.
B. Il y a 18000 ans, le climat est relativement froid, 4000 ans plus tard, le climat se réchauffe.
C. Il y a 18000 ans, le climat est relativement chaud, 4000 ans plus tard, le climat se réchauffe davantage.
D. Il y a 18000 ans, le climat est relativement chaud, 4000 ans plus tard, le climat se refroidit.
E. Le Dernier Maximum Glaciaire est daté entre - 18000 et -16000 ans.
F. Le Dernier Maximum Glaciaire est daté de - 8000 ans.
G. L'Optimum Holocène est daté de - 18000 ans.
H. L'Optimum Holocène est daté de -8000 ans.

34. Lesquelles de ces affirmations sont vraies ?

A. La banquise est de l'eau de mer gelée (quelques mètres d'épaisseur) qui flotte sur la mer.
B. La banquise est de l'eau douce gelée (quelques centaines de mètres d'épaisseur) qui flotte sur l'eau de mer.
C. Un inlandsis est une accumulation de cristaux de glace sur les océans.
D. Un inlandsis est une accumulation de cristaux de glace sur les continents.
E. La fonte des glaces de la banquise et la fonte des glaces des inlandsis contribuent à l'élévation du niveau des mers.
F. La fonte de l'inlandsis entraîne une remontée du niveau moyen des mers, en revanche, la fonte de la banquise n'a pas d'effet sur l'élévation du niveau des mers.
G. La fonte de la banquise entraîne une remontée du niveau moyen des mers, en revanche, la fonte de l'inlandsis n'a pas d'effet sur l'élévation du niveau des mers.
H. L'accumulation de glace des inlandsis représente une surcharge qui provoque la surrection de la croûte par isostasie.
I. L'accumulation de glace des inlandsis représente une surcharge qui provoque l'enfoncement de la croûte par isostasie.
J. La transition d'une période glaciaire vers une période interglaciaire ne provoque généralement aucun effet sur le trait de côte sur les continents.
K. La transition d'une période glaciaire vers une période interglaciaire provoque généralement le recul du trait de côte sur les continents.
L. La transition d'une période glaciaire vers une période interglaciaire provoque généralement l'avancée du trait de côte sur les continents.

Document 5 : L'Amérique du Nord il y a 11000 ans

- - Limite d'extension de la calotte glaciaire vers - 11000 ans

Document 6 : Le Lac Agassiz

Le lac Agassiz était un immense lac proglaciaire occupant la partie centrale du continent nord-américain. Formé il y a environ 12000 ans, le lac n'existe plus aujourd'hui mais a donné naissance à de plus petits lacs, les lacs Winnipeg et Manitoba.

35. L'apparition du lac Agassiz s'explique par :

A. Un changement de température qui a provoqué la fonte de l'inlandsis permettant un apport d'eau important.
B. Un changement de température qui a provoqué l'avancée du glacier permettant l'apparition de lacs glaciaires.
C. Un changement de climat responsable d'une variation de la température et de précipitations importantes.
D. Une répétition plusieurs années consécutives du phénomène El Niño sur le continent Américain.
E. Un écoulement d'eau les buttes témoins.
F. Un écoulement d'eau vers les embouchures des fleuves.
G. Un écoulement d'eau vers des dépressions topographiques.
36. Les foraminifères benthiques du Golfe du Mexique datés de 11000 ans, ont un test calcaire plus riche en ${ }^{16} \mathrm{O}$ que les foraminifères de la Baie d'Hudson. Quelles hypothèses vous semblent les plus logiques ?
A. Il y a 11000 ans, au Nord, la fonte est plus faible qu'au Sud.
B. Il y a 11000 ans, au Nord, la fonte est plus forte qu'au Sud.
C. Il y a 11000 ans, une calotte glaciaire empêche l'écoulement des eaux de fonte vers le Nord.
D. Il y a 11000 ans, une calotte glaciaire empêche l'écoulement des eaux de fonte vers le Sud.
E. Il y a 11000 ans, la baie d'Hudson reçoit l'eau du lac Agassiz issue de la fonte de l'inlandsis.
F. Il y a 11000 ans, le Golfe du Mexique reçoit l'eau du lac Agassiz issue de la fonte de l'inlandsis.
G. Il y a 11000 ans, les bassins versants de l'Amérique du Nord sont les mêmes qu'actuellement.
37. Les foraminifères benthiques du Golfe du Mexique datés de $\mathbf{8 0 0 0} \mathbf{~ a n s , ~ o n t ~ u n ~ t e s t ~ c a l c a i r e ~ d o n t ~ l a ~ t e n e u r ~}$ en ${ }^{16} \mathrm{O}$ est la même que les foraminifères de la baie d'Hudson. Quelles hypothèses vous semblent les plus logiques?
A. Il y a 8000 ans, les Foraminifères ont prélevé tellement $\mathrm{d}^{116} \mathrm{O}$, que la proportion est rétablie dans les différentes zones de l'Atlantique.
B. Il y a 8000 ans , au Nord, la fonte est plus faible qu'au Sud.
C. Il y a 8000 ans, au Nord, la fonte est plus forte qu'au Sud.
D. Il y a 8000 ans, une calotte glaciaire empêche l'écoulement des eaux de fonte vers le Nord.
E. Il y a 8000 ans, une calotte glaciaire empêche l'écoulement des eaux de fonte vers le Sud.
F. Il y a 8000 ans, la baie d'Hudson reçoit l'eau du lac Agassiz issue de la fonte de l'inlandsis.
G. Il y a 8000 ans, le Golfe du Mexique reçoit l'eau du lac Agassiz issue de la fonte de l'inlandsis.
38. Le lac Agassiz n'existe plus aujourd'hui. Quelles hypothèses vous semblent les plus logiques ?
A. Entre 11000 ans et aujourd'hui, l'eau du lac s'est déversée dans le Golfe du Mexique.
B. Entre 11000 ans et aujourd'hui, l'eau du lac s'est déversée complètement dans la baie d'Hudson.
C. Entre 11000 ans et aujourd'hui, l'eau du lac s'est déversée dans le Golfe du Mexique puis dans la Baie d'Hudson.
D. Entre 11000 ans et aujourd'hui, l'eau du lac s'est déversée dans la baie d'Hudson puis le Golfe du Mexique.
E. Entre 11000 ans et aujourd'hui, l'eau du lac s'est déversée subitement dans l'océan Pacifique.
F. Entre 11000 ans et aujourd'hui, une chaîne de montagne s'est formée, des reliefs positifs sont apparus, les bassins ont disparu.
G. Entre 11000 ans et aujourd'hui, l'érosion de la chaîne a été à l'origine de la formation d'éboulis qui ont comblés le bassin.
H. Entre 11000 ans et aujourd'hui, la barrière Nord constituée de glace a disparu.
I. Entre 11000 ans et aujourd'hui, l'avancée de l'inlandsis a fait disparaitre le lac.
39. L'évolution du Lac Agassiz confirme les affirmations suivantes:
A. La limite des bassins versants est toujours définie par les lignes de crête des reliefs.
B. Les variations de répartition des bassins versants ne dépendent que de l'érosion.
C. L'écoulement des eaux suit les lignes de plus grande pente.
D. Les variations de température ont des conséquences sur la composition des eaux océaniques.
E. Les variations de température ont des conséquences sur l'écoulement des eaux.

Exercice 6 : Sismicité et risque aux Etats-Unis

Document 1 : Répartition des séismes en Californie (les points noirs représentent les foyers des séismes)

Document 2 :

Sismicité en coupe selon la direction A - B
(Wallace, 1990)

[^1]En ordonndes, la profondeur des bypocerntres en km

Document 3 : Déplacement le long des failles en fonction des zones (valeurs en mm/an)

Déplacements le long des failles en fonction des zones

(Wallace, 1990)
Les traits épais correspondent à des "domaines bloqués », où les séismes sont rares mais de forte magnitude, les traits fins correspondent à des zones de "glissement libre" dans lesquelles les séismes sont nombreux mais de faible magnitude.
40. Les séismes
A. Traduisent la relaxation partielle d'une déformation accumulée dans des plaques mobiles dont le déplacement a été bloqué temporairement.
B. Sont causés uniquement par le frottement entre deux ensembles rigides.
C. Sont causés uniquement par la cassure d'un ensemble rigide et la formation d'une faille.
D. Peuvent être dus à un mouvement interplaque d'une faille préexistante.
E. Peuvent être dus à un mouvement interplaque d'une faille qui se forme.
F. Peuvent être dus à un mouvement intraplaque d'une faille préexistante.
G. Peuvent être dus à un mouvement intraplaque d'une faille qui se forme.
41. La localisation des hypocentres des séismes de la figure ci-dessus associés aux grandes failles représentés sur les figures ci-dessus sont caractéristiques de :
A. De frottements entre des zones superficielles rigides de la croûte continentale, la partie inférieure étant ductile.
B. De frottements entre deux blocs de la croûte continentale totalement rigides.
C. De frottements entre deux éléments de plaques lithosphériques comprenant de la croûte et du manteau superficiel.
D. D'un contexte de chevauchement intracontinental.
E. D'un contexte de décrochement.
F. D'un contexte d'extension.

On cherche à classer l'importance du risque pour différentes types de zones localisées par les lettres X, Y et Z sur la carte indiquant les déplacements le long des failles, et ceci pour différents types d'occupation humaine. On entendra par «construction classique» des ensembles de bâtiments datant d’avant 1980, maçonnées, construits en pierre, ou en charpente métallique, destinés à durer sans intégrer cependant des dispositifs antismiques. On considérera comme "construction sommaire», des constructions réalisées dans l'urgence avec les matériaux disponibles. Les localisations et les types d'habitat correspondant aux quatre zones proposées ont été définis arbitrairement et ne correspondent pas à des cas réels.

> Zone A : site urbain dense situé en X, construit en majorité selon des normes antisismiques
> Zone B : site urbain dense construit en Y constitué de bâtiments de construction "classique»
> Zone C : site urbain dense sur en zone en Z constitué de bâtiments de construction "classique»
> Zone D : site périurbain dense construit en X constitués de constructions sommaires.
42. Quel classement en terme d'intensité de l'aléa convient le mieux pour les différentes zones désignées par la lettre correspondant :
A. $\mathrm{C}<\mathrm{B}<\mathrm{A}<\mathrm{D}$
B. $\mathrm{C}<\mathrm{B}<\mathrm{A}=\mathrm{D}$
C. $\mathrm{C}<\mathrm{A}=\mathrm{D}<\mathrm{B}$
D. $\mathrm{C}<\mathrm{A}<\mathrm{D}<\mathrm{B}$

43. Quelle affirmation vous semble le mieux correspondre:

A. Les enjeux sont plus importants en zone A parce que les constructions aux normes anti-sismiques sont les plus onéreuses à reconstruire.
B. Les enjeux sont les plus importants dans la zone D parce que les constructions sont plus fragiles.
C. Les enjeux sont moindres en C parce que la zone n'est pas sismique.
D. Les enjeux peuvent être considérés comme proches car dans tous les cas la population est dense
44. Quel classement vous semble le meilleur sur une échelle de vulnérabilité croissante :
A. $\mathrm{C}=\mathrm{B}<\mathrm{A}<\mathrm{D}$
B. $\mathrm{A}<\mathrm{C}=\mathrm{B}<\mathrm{D}$
C. $\mathrm{A}<\mathrm{C}<\mathrm{B}<\mathrm{D}$
D. $\mathrm{D}<\mathrm{C}<\mathrm{B}<\mathrm{A}$
E. $\mathrm{C}<\mathrm{D}<\mathrm{A}=\mathrm{B}$
F. $\mathrm{C}<\mathrm{B}<\mathrm{A}=\mathrm{D}$
45. Quel classement par risque croissant vous semble le meilleur :
A. $\mathrm{C}<\mathrm{A}<\mathrm{B}<\mathrm{D}$
B. $\mathrm{A}<\mathrm{C}<\mathrm{B}<\mathrm{D}$
C. $\mathrm{C}<\mathrm{B}<\mathrm{A}=\mathrm{D}$
D. $\mathrm{C}<\mathrm{B}<\mathrm{A}<\mathrm{D}$
E. $\mathrm{C}<\mathrm{B}<\mathrm{A}<\mathrm{D}$
F. $\mathrm{C}<\mathrm{A}=\mathrm{D}<\mathrm{B}$
G. $\mathrm{C}<\mathrm{A}<\mathrm{D}<\mathrm{B}$
46. Lequel des tableaux vous semble correspondre le mieux à la synthèse de vos analyses et en vous fondant uniquement sur les éléments de sismicité historique fournis dans les documents ? (les valeurs indiqués dans le tableau signifient: $0=$ nul(le), $1=$ faible, $2=$ moyen(ne), $3=$ forte; elles nont quiune valeur relative limiteé à l'exemple étudié ici)
A.

Zones	Alea				Enjeux	Vulnérabilité

B.

Zones	Alea			Enjeux	Vulnérabilité	Risque
	Fréquence	Intensité	Bilan de la dangerosité			
A	3	1	2	3	2	2
B	1	3	3	3	2	3
C	3	1	2	0	0	0
D	3	1	2	3	3	3

C. BONNE REPONSE

Zones	Alea				Enjeux	Vulnérabilité

D.

Zones	Alea				Enjeux	Vulnérabilité

[^0]: Nom : \qquad Prénom : \qquad

 Date de naissance : \qquad Classe : \qquad Etablissement : \qquad

 Je m'engage sur l'honneur à ne pas diffuser le contenu de ce test avant l'annonce des résultats.

[^1]: En abscisses : Distmer à la faille de San Andreas (SA) en km

